Recent developments in theories of non-Riemannian gravitational interactions are outlined. The question of the motion of a fluid in the presence of torsion and metric gradient fields is approached in terms of the divergence of the Einstein tensor associated with a general connection. In the absence of matter the variational equations associated with a broad class of actions involving non-Riemannian fields give rise to an Einstein-Proca system associated with the standard Levi-Civita connection.
School of Physics and Chemistry, Lancaster University, Lancaster LA1 4YB, U.K.
Bibliografia
[1] H. Weyl, Geometrie und Physik, Naturwissenschaften 19 (1931) 49.
[2] J. Scherk, J. H. Schwarz, Phys. Letts 52B (1974) 347.
[3] T. Dereli, R. W. Tucker, Lett. Class. Q. Grav. 12 (1995) L31.
[4] T. Dereli, M. Önder, R. W. Tucker, Lett. Class. Q. Grav. 12 (1995) L25.
[5] T. Dereli, R. W. Tucker, Class. Q. Grav. 11 (1994) 2575.
[6] R. W. Tucker, C. Wang, Class. Quan. Grav. 12 (1995) 2587.
[7] F. W. Hehl, J. D. McCrea, E. W. Mielke, Y. Ne'eman, Physics Reports, 258 (1995) 1.
[8] F. W. Hehl, E. Lord, L. L. Smalley, Gen. Rel. Grav. 13 (1981) 1037.
[9] P. Baekler, F. W. Hehl, E. W. Mielke, ``Non-Metricity and Torsion'' in Proc. of 4th Marcel Grossman Meeting on General Relativity, Part A, Ed. R Ruffini (North Holland 1986) 277.
[10] V. N. Ponomariev, Y. Obukhov, Gen. Rel. Grav. 14 (1982) 309.
[11] J. D. McCrea, Clas. Q. Grav. 9 (1992) 553.
[12] R. Tresguerres, Z. für Physik C 65 (1995) 347.
[13] R. Tresguerres, Phys.Lett. A200 (1995) 405.
[14] Y. Obukhov, E. J. Vlachynsky, W. Esser, R. Tresguerres, F. W. Hehl, An exact solution of the metric-affine gauge theory with dilation, shear and spin charges, gr-qc 9604027 (1996).
[15] E. J. Vlachynsky, R. Tresguerres, Y. Obukhov, F. W. Hehl, An axially symmetric solution of metric-affine gravity, gr-qc 9604035 (1996).
[16] P. Teyssandier, R. W. Tucker, Class. Quantum Grav 13 (1996) 145.
[17] T. Dereli, M. Önder, J. Schray, R. W. Tucker, C. Wang, Non-Riemannian Gravity and the Einstein-Proca System, gr-qc 9604039 (1996).
[18] Y. Obhukov, R. Tresguerres, Phys. Lett. A184 (1993) 17.
[19] Y. Ne'eman, F. W. Hehl, Test Matter in a Spacetime with Nonmetricity, gr-qc 9604047 (1996).
[20] H. Kleinert, A. Pelster, Lagrangian Mechanics in Spaces with Curvature and Torsion, gr-qc 9605028 (1996).