PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
1997 | 41 | 2 | 179-208
Tytuł artykułu

Wavelet transform and binary coalescence detection

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We give a short account of some time-frequency methods which are relevant in the context of gravity waves detection. We focus on the case of wavelet analysis which we believe is particularly appropriate. We show how wavelet transforms can lead to efficient algorithms for detection and parameter estimation of binary coalescence signals. In addition, we give in an appendix some of the ingredients needed for the construction of discrete wavelet decompositions and corresponding fast algorithms.
Słowa kluczowe
Rocznik
Tom
41
Numer
2
Strony
179-208
Opis fizyczny
Daty
wydano
1997
Twórcy
  • CPT, CNRS-Luminy, Case 907, 13288 Marseille Cedex 09, France
  • CPT, CNRS-Luminy, Case 907, 13288 Marseille Cedex 09, France
Bibliografia
  • [1] A. Abramovici et al. (1992): LIGO: the Laser Interferometer Gravitational-Wave Observatory, Science, 256, p. 325-333.
  • [2] P. Abry and A. Aldroubi (1995): Designing Multiresolution Analysis Type Wavelets and their Fast Algorithms, Int. J. of Fourier Anal. and Appl. 2, 135-159.
  • [3] A. Antoniadis & G. Oppenheim Eds (1994): proceedings of the conference Wavelets and Statistics, Villard de Lans, France, Lecture Notes in Statistics.
  • [4] F. Auger and P. Flandrin (1993): Improving the Readability of Time-Frequency and Time-Scale Representations by the Reassignment Method, Technical Report 93.05, Laboratoire d'automatique, Ecole Centrale de Nantes.
  • [5] R. Balasubramanian, B.S. Sathyaprakash and S.V. Dhurhandar (1995): Gravitational Waves from Coalescing Binaries: Detection Strategies and Monte Carlo Estimation of Parameters, Phys. Rev. D 53, vol. 6 pp. 3033-3055.
  • [6] L. Blanchet, T. Damour and B.R. Iyer (1995): Phys. Rev. D 51, p. 5360.
  • [7] B. Boashash (1992): Estimating and Interpreting the Instantaneous Frequency of a Signal, Part I: Fundamentals. Proc. IEEE 80, pp. 520-538. Part II: Applications and Algorithms. Proc. IEEE 80, pp. 540-568.
  • [8] C. Bradaschia et al. (1990): Nucl. Instrum. Methods Phys. Res. A 518.
  • [9] D.R. Brillinger (1981): Time Series; Data Analysis and Theory, Holden Day Inc.
  • [10] R. Carmona (1993): Wavelet Identification of Transients in Noisy Signals. in Mathematical Imaging: Wavelet Applications in Signal and Image Processing pp. 392-400.
  • [11] R. Carmona, W.L. Hwang, B. Torrésani (1995): Characterization of signals by the ridges of their wavelet transform, preprint, submitted to IEEE Trans. Signal Processing.
  • [12] R. Carmona, W.L. Hwang, B. Torrésani (1995): Multiridge Detection and Time-Frequency Reconstruction, preprint, submitted to IEEE Trans. Signal Processing.
  • [13] R. Carmona, W.L. Hwang, B. Torrésani, Practical Time-Frequency Analysis, monograph, to appear.
  • [14] C.K. Chui (1992): An Introduction to Wavelets, Academic Press.
  • [15] J.M. Combes, A. Grossmann, Ph. Tchamitchian Eds. (1989): Wavelets, Time-Frequency Methods and Phase Space, Springer Verlag.
  • [16] E. Copson (1965): Asymptotic expansions, Cambridge University Press.
  • [17] I. Daubechies (1992): Ten Lectures on Wavelets, CBMS-NFS Regional Series in Applied Mathematics 61.
  • [18] M.H.A. Davis (1989): A review of the statistical theory of signal detection in Gravitational Wave Data Analysis, B.F.Schutz Ed., Kluwer Academic Publishers.
  • [19] N. Delprat, B. Escudié, P. Guillemain, R. Kronland-Martinet, Ph. Tchamitchian, B. Torrésani (1992): Asymptotic wavelet and Gabor analysis: extraction of instantaneous frequencies. IEEE Trans. Inf. Th. 38, special issue on Wavelet and Multiresolution Analysis 644-664.
  • [20] R.B. Dingle (1973): Asymptotic expansions, their derivation and interpretation, Academic Press.
  • [21] R. Flaminio, L. Massonnet, B. Mours, S. Tissot, D. Verkindt and M. Yvert (1994): Fast Trigger Algorithms for Binary Coalescences, Astroparticle Physics 2, pp. 235-248.
  • [22] P. Flandrin (1993): Temps-Fréquence, Traité des Nouvelles Technologies, série Traitement du Signal, Hermes.
  • [23] D. Gabor (1946): Theory of communication, J. Inst. Elec. Eng. 903, 429.
  • [24] A. Grossmann, R. Kronland-Martinet, J. Morlet (1989): Reading and understanding the continuous wavelet transform, in [15]
  • [25] A. Grossmann, J. Morlet (1984): Decomposition of Hardy functions into square integrable wavelets of constant shape. SIAM J. of Math. An. 15 ,723.
  • [26] P. Hall, W. Qian and D.M. Titterington (1992): Ridge Finding from Noisy Data. J. Comput. and Graph. Statist. 1, 197-211.
  • [27] J.M. Innocent (1994): Remarks about the Detection of Coalescent Binaries, VIRGO technical report.
  • [28] J.M. Innocent and B. Torrésani (1996): A Multiresolution Strategy for Detecting Gravitational Waves Generated by Binary Collapses, Preprint.
  • [29] J.M. Innocent, J.Y. Vinet (1992): Time-Frequency Analysis of Gravitational Signals from Coalescing Binaries, VIRGO technical Report.
  • [30] S. Jaffard and Y. Meyer (1995): Pointwise Behavior of Functions, preprint.
  • [31] M. Kass, A. Witkin and D.Terzopoulos (1988): Snakes: Active Contour Models, Int. J. of Computer Vision, 321-331.
  • [32] K. Kodera, R. Gendrin, C. de Villedary (1978): Analysis of time-varying signals with small BT values, IEEE Trans. ASSP 26, 64.
  • [33] L.H. Koopmans (1995): The spectral Analysis of Time Series. Probability and Mathematical Statistics 22, Academic Press.
  • [34] A. Królak (1989): Coalescing binaries to post-Newtonain order, in Gravitational Wave Data Analysis, B.F. Schutz Ed., Kluwer Academic Publishers.
  • [35] A. Królak, K.D. Kokkotas, G. Schäfer (1995): On estimation of the post-Newtonian parameters in the gravitational-wave emission of a coalescing binary, Phys.Rev. D52, 2089.
  • [36] A. Królak and B.F. Schutz (1987): Coalescing binaries : probe of the Universe, General Relativity and Gravitation, 19, 1163-1171.
  • [37] A. Królak, P. Trzaskoma (1996): Application of the Wavelet Analysis to Estimation of Parameter of the Gravitational-Wave Signal from a Coalescing Binary, Classical and Quantum Gravity 13, pp. 813-830.
  • [38] P.J.M. van Laarhoven and E.H.L. Aarts (1987): Simulated Annealing: Theory and Applications, Reidel Pub. Co.
  • [39] S. Mallat (1989): Multiresolution Approximation and Wavelets, Trans. AMS 615, 69-88.
  • [40] Y. Meyer (1989): Ondelettes et opérateurs (1989), Hermann.
  • [41] Y. Meyer Ed. (1989): Wavelets and applications, Proceedings of the second wavelet conference, Marseille (1989), Masson.
  • [42] M.A. Muschietti and B. Torrésani (1995): Pyramidal Algorithms for Littlewood-Paley Decompositions. SIAM J. Math. Anal. 26 925-943.
  • [43] B. Picinbono, W. Martin (1983): Représentation des signaux par amplitude et phase instantanées, Annales des Télécommunications 38 (1983), 179-190.
  • [44] W.H. Press, S.A. Teukolsky, W.T. Vetterling and B.P. Flannery (1992): Numerical Recipes: the Art of Scientific Computing, Second Edition, Cambridge University Press.
  • [45] J. Stoer and R. Bulirsch (1991): Introduction to Numerical Analysis, Texts in Applied Mathematics 12, Springer Verlag.
  • [46] Ph. Tchamitchian, B. Torrésani (1991): Ridge and Skeleton extraction from wavelet transform, in Wavelets and their Applications, M.B. Ruskai & Al Eds, Jones&Bartlett, Boston.
  • [47] K.S. Thorne (1987): Gravitational Radiation, in 300 Years of Gravitation, Hawking & Israel Eds, Cambridge University Press.
  • [48] K.S. Thorne (1996): Gravitational Waves from Compact Objects, proceedings of the IAU Symposium 165, J. van Paradijs, E. van der Heuvel and E. Kuulkers Eds, Kluwer.
  • [49] B. Torrésani (1995): Analyse Continue par Ondelettes, Coll. Savoirs Actuels, InterEditions/Editions du CNRS (in French, to be translated into English).
  • [50] D. Verkindt (1993): Etude d'algorithmes rapides de recherche d'un signal d'onde gravitationnelle provenant de coalescence d'étoiles binaires, PhD Thesis, Université de Savoie (in French).
  • [51] M. Vetterli and J. Kovacevic (1995): Wavelets and Sub Band Coding, Prentice Hall Signal Processing Series.
  • [52] J. Ville (1948): Théorie et Applications, de la Notion de Signal Analytique, Cables et Transmissions 2 61-74.
  • [53] M.V. Wickerhauser (1994): Adapted Wavelet Analysis, from Theory to Software, A.K. Peters Publ.
  • [54] E.P. Wigner (1932): On the Quantum Corrections for the Thermodynamic Equilibrium, Phys. Rev. 40, 749-759.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-bcpv41z2p179bwm
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.