ArticleOriginal scientific text
Title
Fourier integral operators and nonlinear wave equations
Authors 1
Affiliations
- Department of Mathematics, Johns Hopkins University, Baltimore, Maryland 21218, U.S.A.
Bibliography
- J. Bourgain, Averages in the plane over convex curves and maximal operators, J. Analyse Math. 47 (1986), 69-85.
- G. Eskin, Degenerate elliptic pseudo-differential operators of principal type (Russian), Mat. Sbornik 82 (124) (1970), 585-628; English translation, Math. USSR Sbornik 11 (1970), 539-582.
- V. Georgiev, H. Lindblad and C. D. Sogge, Weighted Strichartz estimates and global existence for semilinear wave equations, Amer. J. Math., to appear.
- R. Glassey, Finite-time blow-up for solutions of nonlinear wave equations Math. Z. 177, 323-340.
- R. Glassey, Existence in the large for ☐u=F(u) in two dimensions, Math. Z 178 (1981), 233-261
- J. Harmse, On Lebesgue space estimates for the wave equation, Indiana Math. J. 39 (1990), 229-248.
- L. Hörmander, Fourier integral operators I, Acta Math. 127 (1971), 79-183.
- D. Jerison and C. E. Kenig, Unique continuation and absence of positive eigenvalues for Schrödinger operators, Annals of Math. 121 (1985), 463-494.
- F. John, Blow-up of solutions of nonlinear wave equations in three space dimensions, Manuscripta Math. 28 (1979), 235-265.
- H. Kubo, On the critical decay and power for semilinear wave equations in odd space dimensions, preprint.
- H. Lindblad and C. D. Sogge, On existence and scattering with minimal regularity for semilinear wave equations, J. Funct. Anal. 130 (1995), 357-426.
- H. Lindblad and C. D. Sogge, Long-time existence for small amplitude semilinear wave equations, Amer. J. Math. 118 (1996), 1047-1135.
- H. Lindblad and C. D. Sogge, Restriction theorems and semilinear Klein-Gordon equations in (1+3)-dimensions, Duke Math. J. 85 (1996), 227-252.
- C. Müller, On the behavior of the solutions of the differential equation ΔU=F(x,U) in the neighborhood of a point, Comm. Pure Appl. Math. 7 (1954), 505-514.
- J. Schaeffer, The equation
for the critical value of p, Proc. Royal Soc. Edinburgh 101 (1985), 31-44. - A. Seeger, C. D. Sogge and E. M. Stein, Regularity properties of Fourier integral operators, Annals of Math. 134 (1985), 231-251.
- T. Sideris, Nonexistence of global solutions of wave equations in high dimensions, Comm. Partial Diff. Equations 12 (1987), 378-406.
- C. D. Sogge, Propagation of singularities and maximal functions in the plane, Invent. Math. 104 (1991), 349-376.
- C. D. Sogge, Fourier integrals in classical analysis, Cambridge Tracts in Math. 105, Cambridge Univ. Press, Cambridge, 1993.
- C. D. Sogge, Lectures on nonlinear wave equations, International Press, Cambridge, 1995.
- C. D. Sogge and E. M. Stein, Averages of functions over hypersurfaces: Smoothness of generalized Radon transforms, J. Analyse Math. 54, 165-188.
- E. M. Stein, Interpolation of linear operators, Trans. Amer. Math. Soc. 83 (1956), 482-492.
- W. Strauss, Nonlinear scattering theory, Scattering theory in mathematical physics, Reidel, Dordrect, 1979, pp. 53-79.
- W. Strauss, Nonlinear scattering at low energy, J. Funct. Anal. 41 (1981), 110-133.
- R. Strichartz, A priori estimates for the wave equation and some applications, J. Funct. Analysis 5 (1970), 218-235.
- T. Wolff, A sharp
estimate via incidence geometry, Amer. J. Math. (to appear). - Y. Zhou, Cauchy problem for semilinear wave equations with small data in four space dimensions, J. Diff. Equations 8 (1995), 135-144.