ArticleOriginal scientific text

Title

Fourier integral operators and nonlinear wave equations

Authors 1

Affiliations

  1. Department of Mathematics, Johns Hopkins University, Baltimore, Maryland 21218, U.S.A.

Bibliography

  1. J. Bourgain, Averages in the plane over convex curves and maximal operators, J. Analyse Math. 47 (1986), 69-85.
  2. G. Eskin, Degenerate elliptic pseudo-differential operators of principal type (Russian), Mat. Sbornik 82 (124) (1970), 585-628; English translation, Math. USSR Sbornik 11 (1970), 539-582.
  3. V. Georgiev, H. Lindblad and C. D. Sogge, Weighted Strichartz estimates and global existence for semilinear wave equations, Amer. J. Math., to appear.
  4. R. Glassey, Finite-time blow-up for solutions of nonlinear wave equations Math. Z. 177, 323-340.
  5. R. Glassey, Existence in the large for ☐u=F(u) in two dimensions, Math. Z 178 (1981), 233-261
  6. J. Harmse, On Lebesgue space estimates for the wave equation, Indiana Math. J. 39 (1990), 229-248.
  7. L. Hörmander, Fourier integral operators I, Acta Math. 127 (1971), 79-183.
  8. D. Jerison and C. E. Kenig, Unique continuation and absence of positive eigenvalues for Schrödinger operators, Annals of Math. 121 (1985), 463-494.
  9. F. John, Blow-up of solutions of nonlinear wave equations in three space dimensions, Manuscripta Math. 28 (1979), 235-265.
  10. H. Kubo, On the critical decay and power for semilinear wave equations in odd space dimensions, preprint.
  11. H. Lindblad and C. D. Sogge, On existence and scattering with minimal regularity for semilinear wave equations, J. Funct. Anal. 130 (1995), 357-426.
  12. H. Lindblad and C. D. Sogge, Long-time existence for small amplitude semilinear wave equations, Amer. J. Math. 118 (1996), 1047-1135.
  13. H. Lindblad and C. D. Sogge, Restriction theorems and semilinear Klein-Gordon equations in (1+3)-dimensions, Duke Math. J. 85 (1996), 227-252.
  14. C. Müller, On the behavior of the solutions of the differential equation ΔU=F(x,U) in the neighborhood of a point, Comm. Pure Appl. Math. 7 (1954), 505-514.
  15. J. Schaeffer, The equation utt-Δu=|u|p for the critical value of p, Proc. Royal Soc. Edinburgh 101 (1985), 31-44.
  16. A. Seeger, C. D. Sogge and E. M. Stein, Regularity properties of Fourier integral operators, Annals of Math. 134 (1985), 231-251.
  17. T. Sideris, Nonexistence of global solutions of wave equations in high dimensions, Comm. Partial Diff. Equations 12 (1987), 378-406.
  18. C. D. Sogge, Propagation of singularities and maximal functions in the plane, Invent. Math. 104 (1991), 349-376.
  19. C. D. Sogge, Fourier integrals in classical analysis, Cambridge Tracts in Math. 105, Cambridge Univ. Press, Cambridge, 1993.
  20. C. D. Sogge, Lectures on nonlinear wave equations, International Press, Cambridge, 1995.
  21. C. D. Sogge and E. M. Stein, Averages of functions over hypersurfaces: Smoothness of generalized Radon transforms, J. Analyse Math. 54, 165-188.
  22. E. M. Stein, Interpolation of linear operators, Trans. Amer. Math. Soc. 83 (1956), 482-492.
  23. W. Strauss, Nonlinear scattering theory, Scattering theory in mathematical physics, Reidel, Dordrect, 1979, pp. 53-79.
  24. W. Strauss, Nonlinear scattering at low energy, J. Funct. Anal. 41 (1981), 110-133.
  25. R. Strichartz, A priori estimates for the wave equation and some applications, J. Funct. Analysis 5 (1970), 218-235.
  26. T. Wolff, A sharp L3 estimate via incidence geometry, Amer. J. Math. (to appear).
  27. Y. Zhou, Cauchy problem for semilinear wave equations with small data in four space dimensions, J. Diff. Equations 8 (1995), 135-144.
Pages:
91-108
Main language of publication
English
Published
1997
Exact and natural sciences