ArticleOriginal scientific text
Title
An introduction to the Einstein-Vlasov system
Authors 1
Affiliations
- Max-Planck-Institut für Gravitationsphysik, Schlaatzweg 1, 14473 Potsdam, Germany
Bibliography
- S. Alinhac and P. Gérard, Opérateurs pseudo-différentiels et théorème de Nash-Moser, InterEditions, Paris, 1991.
- R. Bartnik, The mass of an asymptotically flat manifold, Commun. Pure Appl. Math. 34 (1986), 661-693.
- J. Binney and S. Tremaine, Galactic dynamics, Princeton University Press, Princeton, 1987.
- G. A. Burnett and A. D. Rendall, Existence of maximal hypersurfaces in some spherically symmetric spacetimes, Class. Quantum Grav. 13 (1996), 111-123.
- D. Christodoulou, Violation of cosmic censorship in the gravitational collapse of a dust cloud, Commun. Math. Phys. 93 (1984), 171-195.
- D. Christodoulou, The problem of a self-gravitating scalar field, Commun. Math. Phys. 105 (1986), 337-361.
- Y. Choquet-Bruhat, Problème de Cauchy pour le système intégro différentiel d'Einstein-Liouville, Ann. Inst. Fourier 21 (1971), 181-201.
- Y. Choquet-Bruhat and J. York, The Cauchy problem, in: General Relativity and Gravitation, Vol. 1, A. Held (ed.), Plenum, New York, 1980 99-172.
- R. Courant and D. Hilbert, Methods of Mathematical Physics, Vol. 2, Wiley, New York, 1989.
- J. Ehlers, Survey of general relativity theory, in: Relativity, Astrophysics and Cosmology, W. Israel (ed.), Reidel, Dordrecht, 1973, 55-89.
- R. S. Hamilton, The inverse function theorem of Nash and Moser, Bull. Amer. Math. Soc. 7 (1982), 65-222.
- S. W. Hawking and G. F. R. Ellis, The large-scale structure of space-time, Cambridge University Press, Cambridge, 1973.
- P.-L. Lions and B. Perthame, Propagation of moments and regularity for the three-dimensional Vlasov-Poisson system, Invent. Math. 105 (1991), 415-430.
- A. Majda, Compressible fluid flow and systems of conservation laws in several space variables, Springer, New York, 1984.
- E. Malec and N. Ó Murchadha, Optical scalars and singularity avoidance in spherical spacetimes, Phys. Rev. D50 (1994), 6033-6036.
- J. E. Marsden and F. J. Tipler, Maximal hypersurfaces and foliations of constant mean curvature in general relativity, Phys. Rep. 66 (1980), 109-139.
- K. Pfaffelmoser, Global classical solutions of the Vlasov-Poisson system in three dimensions for general initial data, J. Diff. Equations 95 (1992), 281-303.
- M. Reed and B. Simon, Methods of modern mathematical physics, Academic Press, New York, 1972.
- G. Rein, Generic global solutions of the relativistic Vlasov-Maxwell system of plasma physics, Commun. Math. Phys. 135 (1990), 41-78.
- G. Rein and A. D. Rendall, Global existence of solutions of the spherically symmetric Vlasov-Einstein system with small initial data, Commun. Math. Phys. 150 (1992), 561-583. Erratum: Commun. Math. Phys. 176 (1996), 475-478.
- G. Rein and A. D. Rendall, Global existence of classical solutions to the Vlasov-Poisson system in a three dimensional, cosmological setting, Arch. Rat. Mech. Anal. 126 (1994), 183-201.
- G. Rein, A. D. Rendall and J. Schaeffer, A regularity theorem for solutions of the spherically symmetric Vlasov-Einstein system, Commun. Math. Phys. 168 (1995), 467-478.
- A. D. Rendall, On the choice of matter model in general relativity, Approaches to Numerical Relativity, R. d'Inverno (ed.), Cambridge University Press, Cambridge, 1992, 94-102.
- A. D. Rendall, Cosmic censorship and the Vlasov equation, Class. Quantum Grav. 9 (1992), L99-L104.
- A. D. Rendall, Crushing singularities in spacetimes with spherical, plane and hyperbolic symmetry, Class. Quantum Grav. 12 (1995), 1517-1533.
- D. G. Swanson, Plasma Waves, Academic Press, Boston, 1989.
- S. L. Shapiro and S. A. Teukolsky, Relativistic stellar dynamics on the computer. I. Motivation and numerical method, Astrophys. J. 298 (1985), 34-57.
- R. M. Wald, General Relativity, Chicago University Press, Chicago, 1984.