ArticleOriginal scientific text

Title

An introduction to the Einstein-Vlasov system

Authors 1

Affiliations

  1. Max-Planck-Institut für Gravitationsphysik, Schlaatzweg 1, 14473 Potsdam, Germany

Bibliography

  1. S. Alinhac and P. Gérard, Opérateurs pseudo-différentiels et théorème de Nash-Moser, InterEditions, Paris, 1991.
  2. R. Bartnik, The mass of an asymptotically flat manifold, Commun. Pure Appl. Math. 34 (1986), 661-693.
  3. J. Binney and S. Tremaine, Galactic dynamics, Princeton University Press, Princeton, 1987.
  4. G. A. Burnett and A. D. Rendall, Existence of maximal hypersurfaces in some spherically symmetric spacetimes, Class. Quantum Grav. 13 (1996), 111-123.
  5. D. Christodoulou, Violation of cosmic censorship in the gravitational collapse of a dust cloud, Commun. Math. Phys. 93 (1984), 171-195.
  6. D. Christodoulou, The problem of a self-gravitating scalar field, Commun. Math. Phys. 105 (1986), 337-361.
  7. Y. Choquet-Bruhat, Problème de Cauchy pour le système intégro différentiel d'Einstein-Liouville, Ann. Inst. Fourier 21 (1971), 181-201.
  8. Y. Choquet-Bruhat and J. York, The Cauchy problem, in: General Relativity and Gravitation, Vol. 1, A. Held (ed.), Plenum, New York, 1980 99-172.
  9. R. Courant and D. Hilbert, Methods of Mathematical Physics, Vol. 2, Wiley, New York, 1989.
  10. J. Ehlers, Survey of general relativity theory, in: Relativity, Astrophysics and Cosmology, W. Israel (ed.), Reidel, Dordrecht, 1973, 55-89.
  11. R. S. Hamilton, The inverse function theorem of Nash and Moser, Bull. Amer. Math. Soc. 7 (1982), 65-222.
  12. S. W. Hawking and G. F. R. Ellis, The large-scale structure of space-time, Cambridge University Press, Cambridge, 1973.
  13. P.-L. Lions and B. Perthame, Propagation of moments and regularity for the three-dimensional Vlasov-Poisson system, Invent. Math. 105 (1991), 415-430.
  14. A. Majda, Compressible fluid flow and systems of conservation laws in several space variables, Springer, New York, 1984.
  15. E. Malec and N. Ó Murchadha, Optical scalars and singularity avoidance in spherical spacetimes, Phys. Rev. D50 (1994), 6033-6036.
  16. J. E. Marsden and F. J. Tipler, Maximal hypersurfaces and foliations of constant mean curvature in general relativity, Phys. Rep. 66 (1980), 109-139.
  17. K. Pfaffelmoser, Global classical solutions of the Vlasov-Poisson system in three dimensions for general initial data, J. Diff. Equations 95 (1992), 281-303.
  18. M. Reed and B. Simon, Methods of modern mathematical physics, Academic Press, New York, 1972.
  19. G. Rein, Generic global solutions of the relativistic Vlasov-Maxwell system of plasma physics, Commun. Math. Phys. 135 (1990), 41-78.
  20. G. Rein and A. D. Rendall, Global existence of solutions of the spherically symmetric Vlasov-Einstein system with small initial data, Commun. Math. Phys. 150 (1992), 561-583. Erratum: Commun. Math. Phys. 176 (1996), 475-478.
  21. G. Rein and A. D. Rendall, Global existence of classical solutions to the Vlasov-Poisson system in a three dimensional, cosmological setting, Arch. Rat. Mech. Anal. 126 (1994), 183-201.
  22. G. Rein, A. D. Rendall and J. Schaeffer, A regularity theorem for solutions of the spherically symmetric Vlasov-Einstein system, Commun. Math. Phys. 168 (1995), 467-478.
  23. A. D. Rendall, On the choice of matter model in general relativity, Approaches to Numerical Relativity, R. d'Inverno (ed.), Cambridge University Press, Cambridge, 1992, 94-102.
  24. A. D. Rendall, Cosmic censorship and the Vlasov equation, Class. Quantum Grav. 9 (1992), L99-L104.
  25. A. D. Rendall, Crushing singularities in spacetimes with spherical, plane and hyperbolic symmetry, Class. Quantum Grav. 12 (1995), 1517-1533.
  26. D. G. Swanson, Plasma Waves, Academic Press, Boston, 1989.
  27. S. L. Shapiro and S. A. Teukolsky, Relativistic stellar dynamics on the computer. I. Motivation and numerical method, Astrophys. J. 298 (1985), 34-57.
  28. R. M. Wald, General Relativity, Chicago University Press, Chicago, 1984.
Pages:
35-68
Main language of publication
English
Published
1997
Exact and natural sciences