Department of Mathematics and Computer Science , University of Miami, Coral Gables, FL 33124, U.S.A.
Bibliografia
[AGH] L. Andersson, G.J. Galloway, and R. Howard, A strong maximum principle for weak solutions of quasi-linear elliptic equations with applications to Lorentzian geometry, preprint.
[AH] L. Andersson and R. Howard, Rigidity results for Robertson-Walker and related spacetimes, preprint.
[B1] R. Bartnik, Regularity of variational maximal surfaces, Acta Mathematica 161 (1988), 145-181.
[B2] R. Bartnik, Remarks on cosmological spacetimes and constant mean curvature surfaces, Commun. Math. Phys. 117 (1988), 615-624.
[BEE] J.K. Beem, P.E. Ehrlich, K.L. Easley, Global Lorentzian Geometry, 2nd ed., Marcel Dekker, New York, 1996.
[BF] D. Brill and F. Flaherty, Isolated maximal hypersurfaces in spacetime, Commun. Math. Phys. 50 (1976), 157-165.
[B+] R. Budic, J. Isenberg, L. Lindblom and P.B. Yasskin, On the determination of Cauchy surfaces from intrinsic properties, Comm. Math. Phys. 61 (1978), 87-95.
[C] E. Calabi, An extension of E. Hopf's maximum principle with applications to Riemannian geometry, Duke Math. J. 25 (1957), 45-56.
[EhG] P. Ehrlich and G.J. Galloway, Timelike lines, Classical and Quantum Grav. J. (1990), 297-307.
[E1] J.-H. Eschenburg, Local convexity and nonnegative curvature - Gromov's proof of the sphere theorem, Invent. Math. 84 (1986), 507-522.
[E2] J.-H. Eschenburg, The splitting theorem for spacetimes with strong energy condition, J. Diff. Geom. 27 (1988), 477-491.
[E3] J.-H. Eschenburg, Maximum principles for hypersurfaces, Manuscripta Math. 64 (1989), 55-75.
[EG] J.-H. Eschenburg and G.J. Galloway, Lines in spacetimes, Comm. Math. Phys. 148 (1992), 209-216.
[F] T. Frankel, On the fundamental group of a comapct minimal submanifold, Ann. Math. 83 (1966), 68-73.