ArticleOriginal scientific text

Title

Quasi-local energy-momentum and the Sen geometry of two-surfaces

Authors 1

Affiliations

  1. Research Institute for Particle and Nuclear Physics, H-1525 Budapest 114, P.O. Box 49, Hungary

Abstract

We review the main ideas of the two dimensional Sen geometry and apply these concepts i. in finding the `most natural' quasi-local energy-momentum, ii. in characterizing the zero energy-momentum and zero mass configurations and iii. in finding the quasi-local radiative modes of general relativity.

Bibliography

  1. F.W. Hehl, On the energy tensor of spinning massive matter in classical field theory and general relativity, Rep. Math. Phys. 9 55 (1976).
  2. B.F. Schutz, R. Sorkin, Variational aspects of relativistic field theories with application to perfect fluid, Ann. Phys. (N.Y.) 107 1 (1977).
  3. A. Trautman, Conservation laws in general relativity, in Gravitation: An Introduction to Current Research, ed. L. Witten, Wiley, New York 1962.
  4. A.J. Anderson, Principles of Relativity Physics, Ch. 13, Academic Press, New York, London 1967.
  5. J.N. Goldberg, Invariant transformations, conservation laws, energy-momentum, in General Relativity and Gravitation, vol 1., ed. A. Held, Plenum Press, New York 1980.
  6. R. Geroch, Asymptotic structure of spacetime, in Asymptotic Structure of Spacetime, ed. F.P. Esposito and L. Witten, Plenum Press, New York 1977.
  7. R. Beig, B.G. Schmidt, Einstein's equations near spatial infinity, Commun. Math. Phys. 87 65 (1982).
  8. A. Ashtekar, J.D. Romano, Spatial infinity as a boundary of spacetime, Class. Quantum Grav. 9 1069 (1992).
  9. R. Penrose, Zero rest-mass fields including gravitation: asymptotic behaviour, Proc. Roy. Soc. London A 284 159 (1965).
  10. R. Penrose, W. Rindler, Spinors and Spacetime, vol 1, Cambridge Univ. Press, Cambridge 1982.
  11. P. Schoen, S.-T. Yau, On the proof of the positive mass conjecture in general relativity, Commun. Math. Phys. 65 45 (1979).
  12. E. Witten, A new proof of the positive energy theorem, Commun. Math. Phys. 80 381 (1981).
  13. J.M. Nester, A new gravitational energy expression with a simple positivity proof, Phys. Lett. 83 A 241 (1981).
  14. W. Israel, J.M. Nester, Positivity of the Bondi gravitational mass, Phys. Lett 85 A 259 (1981).
  15. M. Ludvigsen, J.A.G. Vickers, The positivity of the Bondi mass, J. Phys. A.: Math. Gen. 14 L389 (1981).
  16. M. Ludvigsen, J.A.G. Vickers, A simple proof of the positivity of the Bondi mass, J. Phys. A.: Math. Gen. 15 L67 (1982).
  17. G.T. Horowitz, M.J. Perry, Gravitational energy cannot become negative, Phys. Rev. Lett. 48 371 (1982).
  18. A. Ashtekar, G.T. Horowitz, Energy-momentum of isolated systems cannot be null, Phys. Lett. 89A 181 (1982).
  19. T. Parker, C.H. Taubes, On Witten's proof of the positive energy theorem, Commun. Math. Phys. 84 223 (1982).
  20. O. Reula, Existence theorem for solutions of Witten's equation and nonnegativity of total mass, J. Math. Phys. 23 810 (1982).
  21. G.T. Horowitz, K.P. Tod, A relation between local and total energy in general relativity, Commun. Math. Phys. 85 429 (1982).
  22. O. Reula, K.P. Tod, Positivity of the Bondi energy, J. Math. Phys. 25 1004 (1984).
  23. G.T. Horowitz, The positive energy theorem and its extensions, in Asymptotic Behaviour of Mass and Spacetime Geometry, Lecture Notes in Physics 202, Ed.: F.J. Flaherty, Springer, New York, 1984.
  24. P.F. Yip, A strictly-positive mass theorem, Commun. Math. Phys. 108 653 (1987).
  25. J. Jezierski, J. Kijowski, Positivity of total energy in general relativity, Phys. Rev. D 36 1041 (1987).
  26. J.M. Nester, A positive gravitational energy proof, Phys. Lett. 139 A 112 (1989).
  27. J.M. Nester, Positive energy via the teleparallel Hamiltonian, Int. J. Mod. Phys. A 4 1755 (1989).
  28. A. Dimakis, F. Müller-Hoissen, Spinor fields and the positive energy theorem, Class. Quantum Grav. 7 283 (1990).
  29. G. Bergqvist, Simplified spinorial proof of the positive energy theorem, Phys. Rev. D 48 628 (1993).
  30. L.J. Mason, J. Frauendiener, The Sparling 3-form, Ashtekar variables and quasi-local mass, in Twistors in Mathematics and Physics, ed. R. Baston and T. Bailey, London Math. Soc. Lecture Note Series, Cambridge Univ. Press, Cambridge 1990.
  31. J. Frauendiener, Geometric description of energy-momentum psoudotensors, Class. Quantum Grav. 6 L237 (1989).
  32. L.B. Szabados, On canonical pseudotensors, Sparling's form and Noether currents, Class. Quantum Grav. 9 2521 (1992), and KFKI Report 1991-29/B.
  33. A. Sen, On the existence of neutrino `zero-modes' in vacuum spacetimes J. Math. Phys. 22 1781 (1981).
  34. A. Komar, Covariant conservation laws in general relativity, Phys. Rev. 113 934 (1959).
  35. J. Winicour, L. Tamburino, Lorentz-covariant gravitational energy-momentum linkages, Phys. Rev. Lett. 15 601 (1965).
  36. S.W. Hawking, Gravitational radiation in an expanding universe, J. Math. Phys. 9 598 (1968).
  37. R. Bartnik, New definition of quasilocal mass, Phys. Rev. Lett. 62 2346 (1989).
  38. J.D. Brown, J.M. York, Jr, Quasi-local energy and conserved charges derived from the gravitational action, Phys. Rev. D 47 1407 (1993).
  39. S. Lau, Canonical variables and quasi-local energy in general relativity, Class. Quantum Grav. 10 2379 (1993).
  40. S.A. Hayward, Quasilocal gravitational energy, Phys. Rev. D 49 831 (1994).
  41. J. Kijowski, A simple derivation of canonical structure and quasi-local Hamiltonians in general relativity, (unpublished) 1995.
  42. R. Penrose, Quasi-local mass and angular momentum in general relativity, Proc. Roy. Soc. Lond. A381 53 (1982).
  43. J.N. Goldberg, Conserved quantities at spatial and null infinity: The Penrose potential, Phys. Rev. D 41 41 (1990).
  44. M. Ludvigsen, J.A.G. Vickers, Momentum, angular momentum and their quasi-local null surface extensions, J. Phys. A: Math. Gen. 16 1155 (1983).
  45. G. Bergqvist, M. Ludvigsen, Quasilocal momentum and angular momentum in Kerr spacetime, Class. Quantum Grav. 8 697 (1991).
  46. A.J. Dougan, L.J. Mason, Quasilocal mass constructions with positive energy, Phys. Rev. Lett. 67 2119 (1991).
  47. G. Bergqvist, Positivity and definitions of mass, Class. Quantum Grav. 9 1917 (1992).
  48. G. Bergqvist, Quasilocal mass for event horizons, Class. Quantum Grav. 9 1753 (1992).
  49. A.J. Dougan, Quasi-local mass for spheres, Class. Quantum Grav. 9 2461 (1992).
  50. L.B. Szabados, On the positivity of the quasi-local mass, Class. Quantum Grav. 10 1899 (1993).
  51. R. Geroch, A. Held, R. Penrose, A spacetime calculus based on pairs of null directions, J. Math. Phys. 14 874 (1973).
  52. L.B. Szabados, Two dimensional Sen connections, in Relativity Today, Proceedings of the 4th Hungarian Relativity Workshop, Ed.: R.P. Kerr, Z. Perjés, Akadémiai Kiadó, Budapest 1993.
  53. L.B. Szabados, Two dimensional Sen connections in general relativity, Class. Quantum Grav. 11 1833 (1994).
  54. L.B. Szabados, Two dimensional Sen connections and quasi-local energy-momentum, Class Quantum Grav. 11 1847 (1994).
  55. S. Kobayashi, K. Nomizu, Foundation of differential geometry, vol 2, Interscience, New York, 1968.
  56. A. Ashtekar, Lectures on Non-perturbative Canonical Gravity, World Scientific, Singapore, 1991.
  57. R. Penrose, W. Rindler, Spinors and Spacetime, vol 2, Cambridge Univ. Press, Cambridge, 1986.
  58. C.W. Misner, D.H. Sharp, Relativistic equations for adiabatic, spherically symmetric gravitational collapse, Phys. Rev. 136 B571 (1964).
  59. L.B. Szabados, Quasi-local energy-momentum and two-surface characterization of the pp-wave spacetimes, Class. Quantum Grav. 13 1661 (1996).
  60. D. Kramer, H. Stephani, M.A.H. MacCallum, E. Herlt, Exact Solutions of Einstein's Field Equations, Cambridge Univ. Press, Cambridge 1980.
  61. P.C. Aichelburg, Remark on the superposition principle for gravitational waves, Acta Phys. Austriaca 34 279 (1971).
  62. A. Ashtekar, Asymptotic Quantization, Bibliopolis, Naples 1987.
Pages:
205-219
Main language of publication
English
Published
1997
Exact and natural sciences