ArticleOriginal scientific text
Title
Quasi-local energy-momentum and the Sen geometry of two-surfaces
Authors 1
Affiliations
- Research Institute for Particle and Nuclear Physics, H-1525 Budapest 114, P.O. Box 49, Hungary
Abstract
We review the main ideas of the two dimensional Sen geometry and apply these concepts i. in finding the `most natural' quasi-local energy-momentum, ii. in characterizing the zero energy-momentum and zero mass configurations and iii. in finding the quasi-local radiative modes of general relativity.
Bibliography
- F.W. Hehl, On the energy tensor of spinning massive matter in classical field theory and general relativity, Rep. Math. Phys. 9 55 (1976).
- B.F. Schutz, R. Sorkin, Variational aspects of relativistic field theories with application to perfect fluid, Ann. Phys. (N.Y.) 107 1 (1977).
- A. Trautman, Conservation laws in general relativity, in Gravitation: An Introduction to Current Research, ed. L. Witten, Wiley, New York 1962.
- A.J. Anderson, Principles of Relativity Physics, Ch. 13, Academic Press, New York, London 1967.
- J.N. Goldberg, Invariant transformations, conservation laws, energy-momentum, in General Relativity and Gravitation, vol 1., ed. A. Held, Plenum Press, New York 1980.
- R. Geroch, Asymptotic structure of spacetime, in Asymptotic Structure of Spacetime, ed. F.P. Esposito and L. Witten, Plenum Press, New York 1977.
- R. Beig, B.G. Schmidt, Einstein's equations near spatial infinity, Commun. Math. Phys. 87 65 (1982).
- A. Ashtekar, J.D. Romano, Spatial infinity as a boundary of spacetime, Class. Quantum Grav. 9 1069 (1992).
- R. Penrose, Zero rest-mass fields including gravitation: asymptotic behaviour, Proc. Roy. Soc. London A 284 159 (1965).
- R. Penrose, W. Rindler, Spinors and Spacetime, vol 1, Cambridge Univ. Press, Cambridge 1982.
- P. Schoen, S.-T. Yau, On the proof of the positive mass conjecture in general relativity, Commun. Math. Phys. 65 45 (1979).
- E. Witten, A new proof of the positive energy theorem, Commun. Math. Phys. 80 381 (1981).
- J.M. Nester, A new gravitational energy expression with a simple positivity proof, Phys. Lett. 83 A 241 (1981).
- W. Israel, J.M. Nester, Positivity of the Bondi gravitational mass, Phys. Lett 85 A 259 (1981).
- M. Ludvigsen, J.A.G. Vickers, The positivity of the Bondi mass, J. Phys. A.: Math. Gen. 14 L389 (1981).
- M. Ludvigsen, J.A.G. Vickers, A simple proof of the positivity of the Bondi mass, J. Phys. A.: Math. Gen. 15 L67 (1982).
- G.T. Horowitz, M.J. Perry, Gravitational energy cannot become negative, Phys. Rev. Lett. 48 371 (1982).
- A. Ashtekar, G.T. Horowitz, Energy-momentum of isolated systems cannot be null, Phys. Lett. 89A 181 (1982).
- T. Parker, C.H. Taubes, On Witten's proof of the positive energy theorem, Commun. Math. Phys. 84 223 (1982).
- O. Reula, Existence theorem for solutions of Witten's equation and nonnegativity of total mass, J. Math. Phys. 23 810 (1982).
- G.T. Horowitz, K.P. Tod, A relation between local and total energy in general relativity, Commun. Math. Phys. 85 429 (1982).
- O. Reula, K.P. Tod, Positivity of the Bondi energy, J. Math. Phys. 25 1004 (1984).
- G.T. Horowitz, The positive energy theorem and its extensions, in Asymptotic Behaviour of Mass and Spacetime Geometry, Lecture Notes in Physics 202, Ed.: F.J. Flaherty, Springer, New York, 1984.
- P.F. Yip, A strictly-positive mass theorem, Commun. Math. Phys. 108 653 (1987).
- J. Jezierski, J. Kijowski, Positivity of total energy in general relativity, Phys. Rev. D 36 1041 (1987).
- J.M. Nester, A positive gravitational energy proof, Phys. Lett. 139 A 112 (1989).
- J.M. Nester, Positive energy via the teleparallel Hamiltonian, Int. J. Mod. Phys. A 4 1755 (1989).
- A. Dimakis, F. Müller-Hoissen, Spinor fields and the positive energy theorem, Class. Quantum Grav. 7 283 (1990).
- G. Bergqvist, Simplified spinorial proof of the positive energy theorem, Phys. Rev. D 48 628 (1993).
- L.J. Mason, J. Frauendiener, The Sparling 3-form, Ashtekar variables and quasi-local mass, in Twistors in Mathematics and Physics, ed. R. Baston and T. Bailey, London Math. Soc. Lecture Note Series, Cambridge Univ. Press, Cambridge 1990.
- J. Frauendiener, Geometric description of energy-momentum psoudotensors, Class. Quantum Grav. 6 L237 (1989).
- L.B. Szabados, On canonical pseudotensors, Sparling's form and Noether currents, Class. Quantum Grav. 9 2521 (1992), and KFKI Report 1991-29/B.
- A. Sen, On the existence of neutrino `zero-modes' in vacuum spacetimes J. Math. Phys. 22 1781 (1981).
- A. Komar, Covariant conservation laws in general relativity, Phys. Rev. 113 934 (1959).
- J. Winicour, L. Tamburino, Lorentz-covariant gravitational energy-momentum linkages, Phys. Rev. Lett. 15 601 (1965).
- S.W. Hawking, Gravitational radiation in an expanding universe, J. Math. Phys. 9 598 (1968).
- R. Bartnik, New definition of quasilocal mass, Phys. Rev. Lett. 62 2346 (1989).
- J.D. Brown, J.M. York, Jr, Quasi-local energy and conserved charges derived from the gravitational action, Phys. Rev. D 47 1407 (1993).
- S. Lau, Canonical variables and quasi-local energy in general relativity, Class. Quantum Grav. 10 2379 (1993).
- S.A. Hayward, Quasilocal gravitational energy, Phys. Rev. D 49 831 (1994).
- J. Kijowski, A simple derivation of canonical structure and quasi-local Hamiltonians in general relativity, (unpublished) 1995.
- R. Penrose, Quasi-local mass and angular momentum in general relativity, Proc. Roy. Soc. Lond. A381 53 (1982).
- J.N. Goldberg, Conserved quantities at spatial and null infinity: The Penrose potential, Phys. Rev. D 41 41 (1990).
- M. Ludvigsen, J.A.G. Vickers, Momentum, angular momentum and their quasi-local null surface extensions, J. Phys. A: Math. Gen. 16 1155 (1983).
- G. Bergqvist, M. Ludvigsen, Quasilocal momentum and angular momentum in Kerr spacetime, Class. Quantum Grav. 8 697 (1991).
- A.J. Dougan, L.J. Mason, Quasilocal mass constructions with positive energy, Phys. Rev. Lett. 67 2119 (1991).
- G. Bergqvist, Positivity and definitions of mass, Class. Quantum Grav. 9 1917 (1992).
- G. Bergqvist, Quasilocal mass for event horizons, Class. Quantum Grav. 9 1753 (1992).
- A.J. Dougan, Quasi-local mass for spheres, Class. Quantum Grav. 9 2461 (1992).
- L.B. Szabados, On the positivity of the quasi-local mass, Class. Quantum Grav. 10 1899 (1993).
- R. Geroch, A. Held, R. Penrose, A spacetime calculus based on pairs of null directions, J. Math. Phys. 14 874 (1973).
- L.B. Szabados, Two dimensional Sen connections, in Relativity Today, Proceedings of the 4th Hungarian Relativity Workshop, Ed.: R.P. Kerr, Z. Perjés, Akadémiai Kiadó, Budapest 1993.
- L.B. Szabados, Two dimensional Sen connections in general relativity, Class. Quantum Grav. 11 1833 (1994).
- L.B. Szabados, Two dimensional Sen connections and quasi-local energy-momentum, Class Quantum Grav. 11 1847 (1994).
- S. Kobayashi, K. Nomizu, Foundation of differential geometry, vol 2, Interscience, New York, 1968.
- A. Ashtekar, Lectures on Non-perturbative Canonical Gravity, World Scientific, Singapore, 1991.
- R. Penrose, W. Rindler, Spinors and Spacetime, vol 2, Cambridge Univ. Press, Cambridge, 1986.
- C.W. Misner, D.H. Sharp, Relativistic equations for adiabatic, spherically symmetric gravitational collapse, Phys. Rev. 136 B571 (1964).
- L.B. Szabados, Quasi-local energy-momentum and two-surface characterization of the pp-wave spacetimes, Class. Quantum Grav. 13 1661 (1996).
- D. Kramer, H. Stephani, M.A.H. MacCallum, E. Herlt, Exact Solutions of Einstein's Field Equations, Cambridge Univ. Press, Cambridge 1980.
- P.C. Aichelburg, Remark on the superposition principle for gravitational waves, Acta Phys. Austriaca 34 279 (1971).
- A. Ashtekar, Asymptotic Quantization, Bibliopolis, Naples 1987.