ArticleOriginal scientific text
Title
Selfgravitating systems in Newtonian theory - the Vlasov-Poisson system
Authors 1
Affiliations
- Mathematisches Institut der Universität München, Theresienstr., 39, 80333 München, Germany
Abstract
We give a review of results on the initial value problem for the Vlasov--Poisson system, concentrating on the main ingredients in the proof of global existence of classical solutions.
Bibliography
- C. Bardos and P. Degond, Global existence for the Vlasov Poisson equation in 3 space variables with small initial data, Ann. Inst. Henri Poincaré, Analyse non linéaire 2 (1985), 101-111.
- J. Batt, Global symmetric solutions of the initial value problem of stellar dynamics, J. Differential Eqns. 25 (1977), 342-364.
- J. Batt, Asymptotic properties of spherically symmetric self-gravitating mass systems for t → ∞, Transport Theory and Statistical Mechanics 16 (1987), 763-778.
- J. Batt, W. Faltenbacher, and E. Horst, Stationary spherically symmetric models in stellar dynamics, Arch. Rational Mech. Anal. 93 (1986), 159-183 .
- J. Batt, P. Morrison, and G. Rein, Linear stability of stationary solutions of the Vlasov-Poisson system in three dimensions, Arch. Rational Mech. Anal. 130 (1995), 163-182.
- J. Batt and G. Rein, A rigorous stability result for the Vlasov-Poisson system in three dimensions, Anal. di Mat. Pura ed Appl. 164 (1993), 133-154.
- F. Bouchut, Existence and uniqueness of a global smooth solution for the Vlasov-Poisson-Fokker-Planck system in three dimensions, J. Functional Analysis 111 (1993), 239-258.
- K. Ganguly and H. Victory, On the convergence of particle methods for multidimensional Vlasov-Poisson systems, SIAM J. Numer. Anal. 26 (1989), 249-288
- R. Glassey and J. Schaeffer, On symmetric solutions of the relativistic Vlasov-Poisson system, Commun. Math. Phys. 101 (1985), 459-473.
- Y. Guo and W. Strauss, Nonlinear instability of double-humped equilibria, Ann. Inst. Henri Poincaré, Analyse non linéaire 12 (1995), 339-352 .
- Y. Guo and W. Strauss, Instability of periodic BGK equilibria, Commun. Pure and Appl. Math. XLVIII (1995), 861-894.
- E. Horst, On the classical solutions of the initial value problem for the unmodified non-linear Vlasov equation II, Math. Meth. in the Appl. Sci. 4 (1982), 19-32.
- E. Horst, On the asymptotic growth of the solutions of the Vlasov-Poisson system, Math. Meth. in the Appl. Sci. 16 (1993), 75-85.
- R. Illner and G. Rein, Time decay of the solutions of the Vlasov-Poisson system in the plasma physical case, Math. Meth. in the Appl. Sci. 19 (1996), 1409-1413.
- P.-L. Lions and B. Perthame, Propagation of moments and regularity for the 3-dimensional Vlasov-Poisson system, Invent. math. 105 (1991), 415-430.
- K. Pfaffelmoser, Globale klassische Lösungen des dreidimensionalen Vlasov-Poisson-Systems, Dissertation, München 1989 .
- K. Pfaffelmoser, Global classical solutions of the Vlasov-Poisson system in three dimensions for general initial data, J. Differential Eqns. 95 (1992), 281-303.
- M. Reed and B. Simon, Methods of Modern Mathematical Physics II, Academic Press, New York, 1975.
- G. Rein, Generic global solutions of the relativistic Vlasov-Maxwell system of plasma physics, Commun. Math. Phys. 135 (1990), 41-78.
- G. Rein, Nonlinear stability for the Vlasov-Poisson system--the energy-Casimir method, Math. Meth. in the Appl. Sci. 17 (1994), 1129-1140.
- G. Rein, Growth estimates for the solutions of the Vlasov-Poisson system in the plasma physics case, Math. Nachrichten, to appear.
- G. Rein, Nonlinear stability of homogeneous models in Newtonian cosmology, Arch. Rational Mech. Anal., to appear.
- G. Rein and A. Rendall, Global existence of classical solutions to the Vlasov-Poisson system in a three-dimensional, cosmological setting, Arch. Rational Mech. Anal. 126 (1994), 183-201.
- J. Schaeffer, Global existence of smooth solutions to the Vlasov-Poisson system in three dimensions, Commun. Part. Diff. Eqns. 16 (1991), 1313-1335.
- J. Schaeffer, Global existence of smooth solutions to the Vlasov-Poisson system in three dimensions (`The Good, the Bad, and the Ugly'), unpublished manuscript.