ArticleOriginal scientific text

Title

A stable class of spacetimes with naked singularities

Authors 1

Affiliations

  1. Technische Universität Berlin, Fachbereich Mathematik, Sekr. MA 8-3, Straß e des 17. Juni 136, 10623 Berlin, Germany

Abstract

We present a stable class of spacetimes which satisfy the conditions of the singularity theorem of Hawking & Penrose (1970), and which contain naked singularities. This offers counterexamples to a geometric version of the strong cosmic censorship hypothesis.

Bibliography

  1. Beem, J. K. and Ehrlich (1981), Global Lorentzian geometry, Marcel Dekker, New York and Basel.
  2. Christodoulou, D. and Klainerman, S. (1992), The Global Nonlinear Stability of Minkowski Space, Princeton University Press, Princeton.
  3. Hawking, S. W. and Ellis, G. F. R. (1973), The large scale structure of space-time, Cambridge University Press, Cambridge.
  4. Hawking, S. W. and Penrose, R. (1970), 'The singularities of gravitational collapse and cosmology', Proc. Roy. Soc. Lond. A 314, 529-548.
  5. Kriele, M. (1996), 'Shell singularities of dust spacetimes', Class. Quantum Grav., to appear.
  6. Kriele, M. and Lim, G. (1995), 'Physical properties of geometrical singularities', Class. Quantum Grav. 12, 3019-3035.
  7. Królak, A. (1987), 'Towards the proof of the cosmic censorship hypothesis in cosmological space-times', J. Math. Phys. 28(1), 138-141.
  8. Lerner, D. E. (1973), 'The space of Lorentz metrics', Commun. Math. Phys. 32, 19-38.
  9. P. Musgrave, Pollney, D. and Lake, K. (1994), 'GRTensorII', The program and its documentation can be found at astro.queensu.ca in the directory /pub/grtensor. Queen's University, Kingston, Ontario, Canada.
  10. Tipler, F. (1977), 'Black holes in closed universes', Nature 270, 500-501.
Pages:
169-178
Main language of publication
English
Published
1997
Exact and natural sciences