ArticleOriginal scientific text

Title

TT-tensors and conformally flat structures on 3-manifolds

Authors 1

Affiliations

  1. Institut für Theoretische Physik, Universität Wien, Austria, Boltzmanngasse 5, A-1090 Wien, Austria

Abstract

We study TT-tensors on conformally flat 3-manifolds (M,g). The Cotton-York tensor linearized at g maps every symmetric tracefree tensor into one which is TT. The question as to whether this is the general solution to the TT-condition is viewed as a cohomological problem within an elliptic complex first found by Gasqui and Goldschmidt and reviewed in the present paper. The question is answered affirmatively when M is simply connected and has vanishing 2nd de Rham cohomology.

Bibliography

  1. L. Bérard-Bergery, J. P. Bourguignon and J. Lafontaine (1975), Déformations localement triviales des variétés riemanniennes, Differential Geometry, Proc. Sympos. Pure Math., vol. XXVII, Part 1, Amer. Math. Soc., Providence, R.I., 3-32.
  2. A. L. Besse (1987), Einstein Manifolds, Springer, Berlin.
  3. E. Calabi (1971), On compact Riemannian manifolds with constant curvature. I, Differential Geometry, Proc. Sympos. Pure Math., vol. III, Amer. Math. Soc., Providence, R.I., 155-180.
  4. S.-S. Chern, L. Simons (1974), Characteristic forms and geometric invariants, Ann. Math. 99, 48-69, and S.-S. Chern (1986), On a conformal invariant of three-dimensional manifolds, Aspects of Mathematics and its Applications, J. A. Barroso (Ed.), Elsevier Science Publishers B.V., 245-252.
  5. Y. Choquet-Bruhat, J. W. York Jr. (1980), The Cauchy Problem, General Relativity and Gravitation, Vol. 1, A. Held (Ed.), Plenum, N.Y., 99-172.
  6. S. Deser (1967), Covariant decomposition of symmetric tensors and the gravitational Cauchy problem, Ann. Inst. Henri Poincaré, VII, 149-188.
  7. S. Deser, R. Jackiw and S. Templeton (1982), Topologically Massive Gauge Theories, Ann. Phys. 140, 372-411.
  8. D. Ferus (1981), A remark on Codazzi tensors in constant curvature spaces, Global Differential Geometry and Global Analysis, D. Ferus et al. (Eds.) LNM 838, Springer, Berlin, 257.
  9. A. E. Fischer, J. E. Marsden (1977), The manifold of conformally equivalent metrics, Can. J. Math. XXIX, 193-209.
  10. J. Gasqui, H. Goldschmidt (1984), Déformations Infinitésimales des Structures Conformes Plates, Birkhäuser, Basel.
  11. G. Hall (1989), The global extension of local symmetries in general relativity, Class. Quant. Grav. 6, 157-161.
  12. S. Kobayashi, K. Nomizu (1963), Foundations of Differential Geometry Vol. 1, Interscience, Wiley, London.
  13. N. H. Kuiper (1949), On conformally-flat spaces in the large, Ann. Math. 50, 916-924, and N. H. Kuiper (1950), On compact conformally Euclidean spaces of dimension > 2, Ann. Math. 52, 478-490.
  14. J. P. Lafontaine (1983), Modules de structures conformes plates et cohomologie de groupes discrets, C.R. Acad. Sc. t. 297, Ser.. I, 655-658.
  15. G. D. Mostow (1973), Strong rigidity of locally symmetric spaces, Ann. of Math. Studies 78, Princeton.
  16. J. Schouten (1921), Über die konforme Abbildung n-dimensionaler Mannigfaltigkeiten mit quadratischer Maß bestimmung auf eine Mannigfaltigkeit mit euklidischer Maß bestimmung, Math. Z. 11, 58-88.
  17. P. Sommers (1978), The geometry of the gravitational field at spacelike infinity, J. Math. Phys. 19, 549-554.
  18. D. C. Spencer (1969), Overdetermined systems of linear partial differential equations, Bull. AMS 75, 179-239.
  19. F. Warner (1983), Foundations of Differentiable Manifolds and Lie Groups, Springer, Berlin.
  20. J. W. York Jr. (1973), Conformally invariant orthogonal decomposition of symmetric tensors on Riemannian manifolds and the initial-value problem of general relativity, J. Math. Phys. 14, 456-464, and J. W. York Jr. (1974), Covariant decompositions of symmetric tensors in the theory of gravitation, Ann. Inst. Henri Poincaré 21, 319-332.
Pages:
109-118
Main language of publication
English
Published
1997
Exact and natural sciences