ArticleOriginal scientific text

Title

Introduction to quantum Lie algebras

Authors 1

Affiliations

  1. Department of Physics, University of Bielefeld, Postfach 10 01 31, 33501 Bielefeld, Germany

Abstract

Quantum Lie algebras are generalizations of Lie algebras whose structure constants are power series in h. They are derived from the quantized enveloping algebras Uh(g). The quantum Lie bracket satisfies a generalization of antisymmetry. Representations of quantum Lie algebras are defined in terms of a generalized commutator. The recent general results about quantum Lie algebras are introduced with the help of the explicit example of (sl2)h.

Bibliography

  1. [1] Dri V. G. Drinfel'd, Hopf algebras and the quantum Yang-Baxter equation, Sov. Math. Dokl. 32 (1985) 254.
  2. [2] Jim M. Jimbo, A q-Difference Analogue of U(g) and the Yang-Baxter Equation, Lett. Math. Phys. 10 (1985) 63.
  3. [3] G. W. Delius, A. Hüffmann, On Quantum Lie Algebras and Quantum Root Systems, q-alg/9506017, J. Phys. A. 29 (1996) 1703.
  4. [4] G. W. Delius, M. D. Gould, Quantum Lie Algebras, their existence, uniqueness and q-antisymmetry, KCL-TH-96-05, q-alg/9605025, Commun. Math. Phys. (in print).
  5. [5] S. L. Woronowicz, Differential Calculus on Compact Matrix Pseudogroups (Quantum Groups), Comm. Math. Phys. 122 (1989) 125.
  6. [6] P. Aschieri, L. Castellani, An introduction to noncommutative differential geometry on quantum groups, Int. J. Mod. Phys. A8 (1993) 1667
  7. D. Bernard, Quantum Lie Algebras and Differential Calculus on Quantum Groups, Prog. Theo. Phys. Suppl. 102 (1990) 49
  8. B. Jurco, Differential Calculus on Quantized Simple Lie Groups, Lett. Math. Phys. 22 (1991) 177
  9. P. Schupp, P. Watts, B. Zumino, Bicovariant Quantum Algebras and Quantum Lie Algebras, Commun. Math. Phys. 157 (1993) 305
  10. P. Schupp, Quantum Groups, Non-Commutative Differential Geometry and Applications, hep-th/9312075 (1993)
  11. K. Schmüdgen, A. Schüler, Classification of Bicovariant Differential Calculi on Quantum Groups of Type A, B, C and D, Comm. Math. Phys. 107 (1995) 635
  12. A. Sudbery, Quantum Lie Algebras of Type An, q-alg/9510004.
  13. [7] Andrew V. Chari, A. Pressley, A Guide to Quantum Groups, Cambridge University Press (1994).
  14. [8] G.W. Delius, M.D. Gould, A. Hüffmann, Y.-Z. Zhang, Quantum Lie algebras associated to Uq(gln) and Uq(sln), q-alg/9508013.
  15. [9] V. Lyubashenko and A. Sudbery, Quantum Lie algebras of type A(N), q-alg/9510004.
  16. [10] World Wide Web, http:/www.mth.kcl.ac.uk/~delius/q-lie.html.
Pages:
91-97
Main language of publication
English
Published
1997
Exact and natural sciences