PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
1997 | 40 | 1 | 67-78
Tytuł artykułu

Problems in the theory of quantum groups

Autorzy
Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This is a collection of open problems in the theory of quantum groups. Emphasis is given to problems in the analytic aspects of the subject.
Słowa kluczowe
Rocznik
Tom
40
Numer
1
Strony
67-78
Opis fizyczny
Daty
wydano
1997
Twórcy
autor
  • Institut des Hautes Etudes Scientifiques, 35 route de Chartres, 91440-Bures-sur-Yvette, France
Bibliografia
  • [1] Andersen, H.H. Polo, P. and Wen, K.: Representations of quantum algebras, Invent. Math. 104 (1991), 1-59.
  • [2] Andruskiewitsch, N. and Enriquez, B.: Examples of compact matrix pseudogroups arising from twisting operation, Commun. Math. Phys. 149 (1992), 195-208.
  • [3] Baaj, S.: Représentation régulière du groupe quantique $E_μ(2)$ de Woronowicz, C. R. Acad. Sci. Paris t. 314, Serie I (1992), 1021-1026.
  • [4] Baaj, S.: Représentation régulière du groupe quantique des déplacements de Woronowicz, in Recent Advances in Operator Algebras, Astérisque 232 (1995), 11-48.
  • [5] Baaj, S. and Skandalis, G.: Unitaires multiplicatifs et dualité pour les produits croisés de C*-algèbres, Ann. Sci. Ec. Norm. Sup. 26 (1993), 425-488.
  • [6] Banica, T.: Théorie des représentations du groupe quantique compact libre O(n), C. R. Acad. Sci. Paris t. 322, Serie I (1996), 241-244.
  • [7] Banica, T.: Le groupe quantique compact libre U(n), Preprint, Unversity of Paris VII, 1996.
  • [8] Biedenharn, L. C. and Lohe, M. A.: An extension of the Borel-Weil construction to the quantum group $U_q(n)$, Comm. Math. Phys. 146 (1992), 483-504.
  • [9] Boca, F.: Ergodic actions of compact matrix pseudogroups on C*-algebras, in Recent Advances in Operator Algebras, Astérisque 232 (1995), 93-109.
  • [10] Borel, A. et al (ed): Automorphic Forms, Representations, and L-Functions, Proc. Symp. Pure Math., Vol 33, Amer. Math. Soc., 1979.
  • [11] Brzeziński, T. and Majid, S.: Quantum group gauge theory on quantum spaces, Commun. Math. Phys. 157 (1993), 591-638.
  • [12] Burghelea, D.: The cyclic homology of the groups rings, Comment. Math. Helv. 60 (1985), 354-365.
  • [13] Chari, V. and Pressley, A.: A Guide to Quantum Groups, Cambridge University Press, 1994.
  • [14] Connes, A.: Noncommutative Geometry, Academic Press, 1994.
  • [15] Connes, A.: Non-commutative differential geometry, Publ. Math. IHES 62 (1985), 41-144.
  • [16] Connes, A.: Noncommutative geometry and reality, J. Math. Phys. 36 No 11 (1996).
  • [17] Curtis, C. W. and Reiner, I.: Methods in Representation Theory, I, Wiley, 1981.
  • [18] Curtis, C. W. and Reiner, I.: Methods in Representation Theory, II, Wiley, 1987.
  • [19] Drinfeld, V. G.: Quantum groups, Proc. ICM-1986, Berkeley, Vol I, Amer. Math. Soc., Providence, R.I., 1987, pp798-820.
  • [20] Dubois-Violette, M. and Launer, G.: The quantum group of a non-degenerate bilinear form, Phys. Lett. B 245 (1990), 175-177.
  • [21] Effros, E. and Ruan, Z.-J.: Discrete quantum groups, I. The Haar measure, Internat. J. Math. 5 (1994), 681-723.
  • [22] Enoch, M. and Schwartz, J. M.: Kac Algebras and Duality of Locally Compact Groups, Springer-Verlag, New York, 1992.
  • [23] Enock, M. and Vainerman, L.: Deformation of a Kac algebra by an abelian subgroup, Preprint, Univ. Pierre et Marrie Curie, Aug, 1995.
  • [24] Faddeev, L. D. Reshetikhin, N. Y. and Takhtajan, L. A.: Quantization of Lie groups and Lie algebras, Algebra and Analysis 1 (1990), 193-225.
  • [25] Gelbart, S. S.: Automorphic Forms on Adele Groups, Annals of Mathematics Studies 83, Princeton University Press, 1975.
  • [26] Goodman, F. M. de la Harpe, P. and Jones, V. F. R.: Coxeter Graphs and Towers of Algebras, MSRI Publ. 14, Springer-Verlag, 1989.
  • [27] Hajac, P. M.: Strong Connections and $U_q(2)$-Yang-Mills Theory on Quantum Principal Bundles, Ph.D Thesis, University of California at Berkeley, May, 1994.
  • [28] Kac, G.: Certain arithmetic properties of ring groups, Funct. Anal. Appl. 6 (1972), 158-160.
  • [29] Kac, G. and Palyutkin, V.: An example of a ring group generated by Lie groups, Ukrain. Math. J. 16 (1964), 99-105.
  • [30] Kac, G. and Palyutkin, V.: Finite ring groups, Trans. Moscow Math. Soc. 15 (1966), 251-294.
  • [31] Knapp, A. W.: Representation Theory of Semisimple Groups: An Overview Based on Examples, Princeton University Press, 1986.
  • [32] Landstad, M. B.: Quantizations arising from abelian subgroups, Internat. J. Math. 5 (1994), 897-936.
  • [33] Levendorskii, S.: Twisted algebra of functions on compact quantum group and their representations, St. Petersburg Math. J. 3:2 (1992), 405-423.
  • [34] Levendorskii, S. and Soibelman, Y.: Algebra of functions on compact quantum groups, Schubert cells, and quantum tori, Comm. Math. Phys. 139, (1991), 141-170.
  • [35] Lusztig, G.: Introduction to Quantum Groups, Progress in Mathematics Vol 110, Birkhauser, 1993.
  • [36] Lusztig, G.: Quantum deformations of certain simple modules over enveloping algebras, Adv. in Math. 70 (1988), 237-249.
  • [37] Majid, S.: Physics for algebraists: non-commutative and noncocommutative Hopf algebras by a bycrossproduct construction, J. Algebra 130 (1990), 17-64.
  • [38] Manin, Y.: Quantum Groups and Noncommutative Geometry, Publications du C.R.M. 1561, Univ de Montreal, 1988.
  • [39] Masuda, T. Mimachi, K. Nakagami, Y. Noumi, M. Saburi, Y. and Ueno, K.: Unitary representations of the quantum group $SU_q(1,1)$: I-Structure of the dual space of $U_qsl(2)$, Lett. Math. Phys. 19 (1990), 187-194.
  • [40] Masuda, T. Mimachi, K. Nakagami, Y. Noumi, M. Saburi, Y. and Ueno, K.: Unitary representations of the quantum group $SU_q(1,1)$: II-Matrix elements of unitary representations and basic hypergeometric functions, Lett. Math. Phys. 19 (1990), 195-204.
  • [41] Masuda, T. and Nakagami, Y.: A von Neumann algebra framework for the duality of the quantum groups, Publ. RIMS 30:5 (1994), 799-850.
  • [42] Masuda, T. Nakagami, Y. and Watanabe, J.: Noncommutative geometry on the quantum SU(2) I: An algebraic viewpoint, K-theory 4 (1990), 157-180.
  • [43] Masuda, T. Nakagami, Y. and Woronowicz, S. L.: A C*-algebraic framework for quantum groups, to appear.
  • [44] Nakagami, Y.: Takesaki duality for the crossed product by quantum groups, in Quantum and Non-Commutative Analysis, H. Araki ed., Kluwer Academic Publishers, 1993, 263-281.
  • [45] Pal, A.: Induced representation and Frobenius reciprocity for compact quantum groups, Proc. Indian Acad. Sci. (Math. Sci.) 105:2 (1995), 157-167.
  • [46] Parshall, B. and Wang, J.: Quantum linear groups, Memoirs AMS 439, 1991.
  • [47] Podleś, P.: Quantum spheres, Letters Math. Phys. 14 (1987), 193-202.
  • [48] Podleś, P.: Symmetries of quantum spaces. Subgroups and quotient spaces of quantum SU(2) and SO(3) groups, Comm. Math. Phys. 170 (1995), 1-20.
  • [49] Podleś, P. and Woronowicz, S. L.: Quantum deformation of Lorentz group, Comm. Math. Phys. 130 (1990), 381-431.
  • [50] Pusz, W.: Irreducible unitary representations of quantum Lorentz group, Comm. Math. Phys. 152 (1993), 591-626.
  • [51] Pusz, W. and Woronowicz, S. L.: Unitary representations of quantum Lorentz group, Preprint, Warsaw University, 1993.
  • [52] Rieffel, M.: Noncommutative tori, Contemp. Math 105 (1990), 191-211.
  • [53] Rieffel, M.: Some solvable quantum groups, in Operator Algebras and Topology, W. B. Arveson, A. S. Mischenko, M. Putinar, M. A. Rieffel and S. Stratila, ed., Proc. Conf. Operator Algebras and their Connection with Topology and Ergodic Theory, 2nd Conference, Romania, 1989, Pitman Research Notes in Mathematics 270, Longman, Burnt Mill, England, 1992, pp146-159.
  • [54] Rieffel, M.: Compact quantum groups associated with toral subgroups, Contemp. Math. 145 (1993), 465-491.
  • [55] Rieffel, M.: Non-compact quantum groups associated with abelian subgroups, Comm. Math. Phys. 171 (1995), 181-201.
  • [56] Rosso, M.: Comparaison des groupes SU(2) quantiques de Drinfeld et Woronowicz, C. R. Acad. Sci. Paris 304 (1987), 323-326.
  • [57] Rosso, M.: Finite dimensional representations of the quantum analog of the enveloping algebra of a complex semisimple Lie algebra, Comm. Math. Phys. 117 (1988), 581-593.
  • [58] Rosso, M.: Algèbres enveloppantes quantifiées, groupes quantiques compacts de matrices et calcul différentiel non-commutatif, Duke Math. J. 61 (1990), 11-40.
  • [59] Serre, J.-P.: Arbres, amalgames, $SL_2$, Soc. Math. France, Asterisque 46 (1977).
  • [60] Skandalis, G.: Operator algebras and duality, Proc. ICM-1990, Kyoto, Vol II, Springer, New York, 1991, pp997-1009.
  • [61] Soibelman, Y.: Algebra of functions on a compact quantum group and its representations, Leningrad Math. J. 2:1 (1990), 161-178.
  • [62] Vaksman, L. and Soibelman, Y.: The algebra of functions on quantum SU(2), Funct. Anal. ego Pril. 223, (1988), 1-14.
  • [63] Varadarajan, V. S.: Lie Groups, Lie Algebras, and their Representations, Graduate Text in Math, no. 102, Springer, 1984.
  • [64] Van Daele, A.: Quantum deformation of the Heisenberg group, Proc. Satellite Conf. of ICM-90, Current Topics in Operator Algebras, 314-325.
  • [65] Van Daele, A.: Discrete quantum groups, J. Alg. 180 (1996), 431-444.
  • [66] Van Daele, A. and Wang, S. Z.: Universal quantum groups, International J. Math 7:2 (1996), 255-264.
  • [67] Wang, S. Z.: General Constructions of Compact Quantum Groups, Ph.D Thesis, University of California at Berkeley, March, 1993.
  • [68] Wang, S. Z.: Free products of compact quantum groups, Comm. Math. Phys. 167 (1995), 671-692.
  • [69] Wang, S. Z.: Tensor products and crossed products of compact quantum groups, Proc. London Math. Soc. 71 (1995), 695-720.
  • [70] Wang, S. Z.: Krein duality for compact quantum groups, J. Math. Phys. 38 No. 1 (1997). %Preprint, Spring, 1992.
  • [71] Wang, S. Z.: Deformations of compact quantum groups via Rieffel's quantization, Commun. Math. Phys. 178 (1996), 747-764.
  • [72] Wang, S. Z.: New classes of compact quantum groups, Lecture notes for talks at the University of Amsterdam and the University of Warsaw, January and March, 1995.
  • [73] S. Z. Wang, Classification of quantum groups $SU_q(n)$, to appear in J. London Math. Soc.
  • [74] S. Z. Wang, Imprimitivity theory for compact quantum groups, In preparation.
  • [75] S. Z. Wang, Rieffel type discrete deformations of finite quantum groups, In preparation.
  • [76] S. Z. Wang, Actions of universal quantum groups on operator algebras, In preparation.
  • [77] S. Z. Wang, Quantum symmetry groups of finite spaces, In preparation.
  • [78] Wassermann, A.: Ergodic actions of compact groups on operator algebras III: Classification for SU(2), Invent. Math. 93 (1988), 309-355.
  • [79] Weyl, H.: The Classical Groups, Princeton University Press, 1946.
  • [80] Weyl, H.: Theory of Groups and Quantum Mechanics, Princeton University Press, 1930.
  • [81] Woronowicz, S. L.: Twisted SU(2) group. An example of noncommutative differential calculus, Publ. RIMS, Kyoto Univ. 23, (1987), 117-181.
  • [82] Woronowicz, S. L.: Compact matrix pseudogroups, Comm. Math. Phys. 111, (1987), 613-665.
  • [83] Woronowicz, S. L.: Tannaka-Krein duality for compact matrix pseudogroups. Twisted SU(N) groups, Invent. Math. 93 (1988), 35-76.
  • [84] Woronowicz, S. L.: Differential calculus on compact matrix pseudogroups (quantum groups), Comm. Math. Phys. 122 (1989), 125-170.
  • [85] Woronowicz, S. L.: Unbounded elements affiliated with C*-algebras and non-compact quantum groups, Comm. Math. Phys. 136 (1991), 399-432.
  • [86] Woronowicz, S. L.: Compact quantum groups, Preprint, Warsaw University, 1992
  • [87] Woronowicz, S. L.: C*-algebras generated by unbounded elements, Reviews in Mathematical Physics 7:3 (1995), 481-521.
  • [88] Woronowicz, S. L.: From multiplicative unitaries to quantum groups, Preprint, Warsaw University, March, 1995.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-bcpv40z1p67bwm
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.