PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
1997 | 40 | 1 | 397-402
Tytuł artykułu

On quantum weyl algebras and generalized quons

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The model of generalized quons is described in an algebraic way as certain quasiparticle states with statistics determined by a commutation factor on an abelian group. Quantization is described in terms of quantum Weyl algebras. The corresponding commutation relations and scalar product are also given.
Słowa kluczowe
Rocznik
Tom
40
Numer
1
Strony
397-402
Opis fizyczny
Daty
wydano
1997
Twórcy
  • Institute of Theoretical Physics, University of Wrocław, Pl. Maksa Borna 9, 50-204 Wrocław, Poland
Bibliografia
  • [1] F. Wilczek, Phys. Rev. Lett. 48, 114 (1982).
  • [2] O. W. Greenberg, Phys. Rev. Lett. 64 705 (1990), Phys. Rev. D 43, 4111 (1991).
  • [3] Y. S. Wu, Phys. Rev. Lett. 52, 2103 (1984), Phys. Rev. Lett. 53, 111 (1984).
  • [4] D. I. Fivel, Phys. Rev. Lett. 65, 3361, (1990).
  • [5] D. Zagier, Commun. Math. Phys. 147, 199 (1992).
  • [6] M. Bożejko, R. Speicher, Interpolation between bosonic and fermionic relations given by generalized Brownian motions. Preprint FSB 132-691, Heildelberg (1992)
  • [7] M. Scheunert, J. Math. Phys. 20, 712, (1979).
  • [8] E. E. Demidov, On some aspects of the theory of quantum groups, Uspekhi Mat. Nauk 48, 39, (1993), in Russ.
  • [9] A. Borowiec, V. K. Kharchenko, Z. Oziewicz, Calculi on Clifford-Weyl and exterior algebras for Hecke braiding, Conferencia dictata por Zbigniew Oziewicz at Centro de Investigation en Matematicas, Guanajuato, Mexico, Seminario de Geometria, jueves 22 de abril de 1993 and at the Conference on Differential Geometric Methods, Ixtapa, Mexico, September 1993.
  • [10] S. Majid, J. Geom. Phys. 13, 169, (1994).
  • [11] W. Marcinek, On unital braidings and quantization, Preprint ITP UWr No 847 (1993) and Rep. Math. Phys. 34, 325, (1994).
  • [12] W. Marcinek, Noncommutative geometry corresponding to arbitrary braidings, J. Math. Phys. 35, 2633, (1994).
  • [13] J. C. Baez, R-commutative geometry and quantization of Poisson algebras, Adv. Math. 95, 61 (1992).
  • [14] R. Rałowski, On deformations of commutation relation algebras, Preprint IFT UWr 890, (1995), q-alg/9506004.
  • [15] W. Marcinek, On the deformation of commutation relations, in Proceedings of the XIII Workshop in Geometric Methods in Physics, July 1-7, 1994 Białowieża, Poland, ed. by J-P. Antoine et al, Plenum Press 1995.
  • [16] J. C. Baez, Lett. Math. Phys. 23, 1333, (1991).
  • [17] W. Marcinek and R. Rałowski, Particle operators from braided geometry, in 'Quantum Groups, Formalism and Applications' XXX Karpacz Winter School in Theoretical Physics, 1994, Eds. J. Lukierski et al., 149-154 (1995).
  • [18] W. Marcinek and Robert Rałowski, On Wick Algebras with Braid Relations, Preprint IFT UWr 876/9, (1994) and J. Math. Phys. 36, 2803, (1995).
  • [19] W. Marcinek, On Commutation Relations for Quons, q-alg/9512015.
  • [20] M. Bożejko, R. Speicher, Math. Ann. 300, 97, (1994).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-bcpv40z1p397bwm
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.