ArticleOriginal scientific text
Title
The symmetry algebra and conserved Currents for Klein-Gordon equation on quantum Minkowski space
Authors 1
Affiliations
- Institute of Mathematics and Computer Science, Technical University of Częstochowa, ul. Dąbrowskiego 73, 42-200 Częstochowa, Poland
Abstract
The symmetry operators for Klein-Gordon equation on quantum Minkowski space are derived and their algebra is studied. The explicit form of the Leibniz rules for derivatives and variables for the case Z=0 is given. It is applied then with symmetry operators to the construction of the conservation law and the explicit form of conserved currents for Klein-Gordon equation.
Bibliography
- M. Klimek, J. Phys. A: Math. & Gen. 26 (1993), 955.
- M. Klimek, in Papers of the
International Colloquium on Quantum Groups and Physics, Czechoslovak J.Phys. 44 (1994), 1049. - M. Klimek, J. Phys. A: Math. & Gen. 29 (1996), 1747.
- M. Klimek, in preparation.
- S. Majid, J.M.P. 34 (1993), 2045.
- S. Majid, J.M.P. 34 (1993), 4843.
- P. Podleś, Commun. Math. Phys. 181 (1996), 569.
- P. Podleś and S.L. Woronowicz, On the Structure of Inhomogenous Quantum Groups, hep-th 9412058, UC Berkeley preprint PAM 631, to appear in Commun. Math. Phys.
- P. Podleś and S.L. Woronowicz, Commun. Math. Phys. 178 (1996), 61.
- Y. Takahashi, An Introduction to Field Quantization, Pergamon Press, Oxford 1969 and references therein.