ArticleOriginal scientific text

Title

The symmetry algebra and conserved Currents for Klein-Gordon equation on quantum Minkowski space

Authors 1

Affiliations

  1. Institute of Mathematics and Computer Science, Technical University of Częstochowa, ul. Dąbrowskiego 73, 42-200 Częstochowa, Poland

Abstract

The symmetry operators for Klein-Gordon equation on quantum Minkowski space are derived and their algebra is studied. The explicit form of the Leibniz rules for derivatives and variables for the case Z=0 is given. It is applied then with symmetry operators to the construction of the conservation law and the explicit form of conserved currents for Klein-Gordon equation.

Bibliography

  1. M. Klimek, J. Phys. A: Math. & Gen. 26 (1993), 955.
  2. M. Klimek, in Papers of the 3rd International Colloquium on Quantum Groups and Physics, Czechoslovak J.Phys. 44 (1994), 1049.
  3. M. Klimek, J. Phys. A: Math. & Gen. 29 (1996), 1747.
  4. M. Klimek, in preparation.
  5. S. Majid, J.M.P. 34 (1993), 2045.
  6. S. Majid, J.M.P. 34 (1993), 4843.
  7. P. Podleś, Commun. Math. Phys. 181 (1996), 569.
  8. P. Podleś and S.L. Woronowicz, On the Structure of Inhomogenous Quantum Groups, hep-th 9412058, UC Berkeley preprint PAM 631, to appear in Commun. Math. Phys.
  9. P. Podleś and S.L. Woronowicz, Commun. Math. Phys. 178 (1996), 61.
  10. Y. Takahashi, An Introduction to Field Quantization, Pergamon Press, Oxford 1969 and references therein.
Pages:
387-395
Main language of publication
English
Published
1997
Exact and natural sciences