PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
1997 | 40 | 1 | 335-349
Tytuł artykułu

Some remarks on quantum and braided group gauge theory

Autorzy
Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We clarify some aspects of quantum group gauge theory and its recent generalisations (by T. Brzeziński and the author) to braided group gauge theory and coalgebra gauge theory. We outline the diagrammatic version of the braided case. The bosonisation of any braided group provides us a trivial principal bundle in three ways.
Rocznik
Tom
40
Numer
1
Strony
335-349
Opis fizyczny
Daty
wydano
1997
Twórcy
autor
  • Department of Mathematics, Harvard University, Science Center, Cambridge MA 02138, USA
Bibliografia
  • [1] T. Brzeziński and S. Majid, Quantum group gauge theory on quantum spaces. Commun. Math. Phys., 157:591-638, 1993. Erratum 167:235, 1995.
  • [2] T. Brzeziński and S. Majid, Quantum group gauge theory and Q-monopoles. In M. Olmo et al, editor, Anales de Física Monografías, volume 1, pages 75-78. CIEMAT/RSEF, Madrid, 1993.
  • [3] T. Brzeziński, Translation map in quantum principal bundles. J. Geom. Phys., 20:347-368, 1996.
  • [4] P. Hajac, Strong connections on quantum principal bundles. Commun. Math. Phys., To appear, 1997.
  • [5] T. Brzeziński and S. Majid, Coalgebra gauge theory. Preprint, Damtp/95-74, 1995.
  • [6] T. Brzeziński, Quantum homogeneous spaces as quantum quotient spaces. J. Math. Phys., 37:2388-2399, 1996.
  • [7] S. Majid, Diagrammatics of braided group gauge theory. Preprint, Damtp/96-31, 1996.
  • [8] S. Majid, Braided momentum in the q-Poincaré group. J. Math. Phys., 34:2045-2058, 1993.
  • [9] S. Majid, Foundations of Quantum Group Theory. Cambridge Univeristy Press, 1995.
  • [10] S. Majid, Cross product quantization, nonabelian cohomology and twisting of Hopf algebras. In V.K. Dobrev, H.-D. Doebner and A.G. Ushveridze, editors, Generalised Symmetries in Physics, pages 13-41. World Sci., 1994.
  • [11] Y. Doi, Equivalent crossed products for a Hopf algebra. Commun. Algebra, 17:3053-3085, 1989.
  • [12] S. Majid, Examples of braided groups and braided matrices. J. Math. Phys., 32:3246-3253, 1991.
  • [13] S. Majid, Quantum and braided linear algebra. J. Math. Phys., 34:1176-1196, 1993.
  • [14] S. Majid, Beyond supersymmetry and quantum symmetry (an introduction to braided groups and braided matrices). In M-L. Ge and H.J. de Vega, editors, Quantum Groups, Integrable Statistical Models and Knot Theory, pages 231-282. World Sci., 1993.
  • [15] S. Majid, Braided groups and algebraic quantum field theories. Lett. Math. Phys., 22:167-176, 1991.
  • [16] S. Majid, Cross products by braided groups and bosonization. J. Algebra, 163:165-190, 1994.
  • [17] S. Majid, Quantum and braided Lie algebras. J. Geom. Phys., 13:307-356, 1994.
  • [18] S. Majid, Quasi-* structure on q-Poincaré algebras. J. Geom. Phys., To appear, 1997.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-bcpv40z1p335bwm
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.