ArticleOriginal scientific text

Title

A characterization of coboundary Poisson Lie groups and Hopf algebras

Authors 1

Affiliations

  1. Department of Mathematical Methods in Physics, University of Warsaw, Hoża 74, 00-682 Warszawa, Poland

Abstract

We show that a Poisson Lie group (G,π) is coboundary if and only if the natural action of G×G on M=G is a Poisson action for an appropriate Poisson structure on M (the structure turns out to be the well known π+). We analyze the same condition in the context of Hopf algebras. A quantum analogue of the π+ structure on SU(N) is described in terms of generators and relations as an example.

Bibliography

  1. V. G. Drinfeld, Hamiltonian structures on Lie groups, Lie bialgebras and the meaning of the classical Yang-Baxter equations, Soviet Math. Dokl. 27 (1983), 68-71.
  2. V. G. Drinfeld, Quantum groups, Proc. ICM, Berkeley, 1986, vol.1, 789-820.
  3. M. A. Semenov-Tian-Shansky, Dressing transformations and Poisson Lie group actions, Publ. Res. Inst. Math. Sci., Kyoto University 21 (1985), 1237-1260.
  4. J.-H. Lu and A. Weinstein, Poisson Lie Groups, Dressing Transformations and Bruhat Decompositions, J. Diff. Geom. 31 (1990), 501-526.
  5. J.-H. Lu, Multiplicative and affine Poisson structures on Lie groups, Ph.D. Thesis, University of California, Berkeley (1990).
  6. S. Zakrzewski, Poisson structures on the Lorentz group, Lett. Math. Phys. 32 (1994), 11-23.
  7. S. Zakrzewski, Poisson homogeneous spaces, in: 'Quantum Groups, Formalism and Applications', Proceedings of the XXX Winter School on Theoretical Physics 14-26 February 1994, Karpacz, J. Lukierski, Z. Popowicz, J. Sobczyk (eds.), Polish Scientific Publishers PWN, Warsaw 1995, pp. 629-639.
  8. S. L. Woronowicz, Tannaka-Krein duality for compact matrix pseudogroups. Twisted SU(N) groups, Invent. Math. 93 (1988), 35.
  9. J.-H. Lu, On the Drinfeld double and the Heisenberg double of a Hopf algebra, Duke Math. Journ. 74, No.3 (1994), 763-776.
Pages:
273-278
Main language of publication
English
Published
1997
Exact and natural sciences