ArticleOriginal scientific text

Title

Contractions of Poisson-Lie groups, Lie bialgebras and quantum deformations

Authors 1, 2

Affiliations

  1. Departamento de Física, Universidad de Burgos, E-09003, Burgos, Spain
  2. Departamento de Física Teórica, Universidad de Valladolid, E-47011, Valladolid, Spain

Abstract

Contractions of Poisson-Lie groups are introduced by using Lie bialgebra contractions. As an application, contractions of SL(2,R) Poisson-Lie groups leading to (1+1) Poincaré and Heisenberg structures are analysed. It is shown how the method here introduced allows a systematic construction of the Poisson structures associated to non-coboundary Lie bialgebras. Finally, it is sketched how contractions are also implemented after quantization by using the Lie bialgebra approach.

Bibliography

  1. A. Ballesteros, Contractions of Lie bialgebras and quantum deformations of kinematical symmetries, Ph. D. Thesis (in Spanish), Universidad de Valladolid (1995).
  2. A. Ballesteros, N.A. Gromov, F.J. Herranz, M.A. del Olmo and M. Santander, Lie bialgebra contractions and quantum deformations of quasi-orthogonal algebras, J. Math. Phys. 36 (1995), 5916.
  3. A. Ballesteros, F.J. Herranz, C.M. Pereña, M.A. del Olmo and M. Santander, Non standard quantum (1+1) Poincaré group: a T matrix approach, J. Phys. A: Math. Gen. 28 (1995), 7113.
  4. E. Celeghini, R. Giachetti, E. Sorace and M. Tarlini, Contractions of quantum groups, Lecture Notes in Mathematics n. 1510. Springer-Verlag, Berlín (1992) 221.
  5. V.G. Drinfel'd, Hamiltonian structures on Lie groups, Lie bialgebras and the geometric meaning of the classical Yang-Baxter equations, Sov. Math. Dokl. 27 (1983), 68.
  6. E. Inönü and E.P. Wigner, Contractions of groups and representations, Proc. Natl. Acad. Sci. U. S. 39 (1953), 510.
  7. E.J. Saletan, Contractions of Lie groups, J. Math. Phys 2 (1961), 1.
  8. E. Weimar-Woods, The three-dimensional real Lie algebras and their contractions, J. Math. Phys 32 (1991), 2028.
Pages:
261-271
Main language of publication
English
Published
1997
Exact and natural sciences