ArticleOriginal scientific text
Title
Semilinear relations and *-representations of deformations of so(3)
Authors 1, 1
Affiliations
- Institute of Mathematics, National Academy of Sciences of Ukraine, 3 Tereshchenkivska Str., Kiev, 252601 Ukraine
Abstract
We study a family of commuting selfadjoint operators , which satisfy, together with the operators of the family , semilinear relations , ( , , are fixed Borel functions). The developed technique is used to investigate representations of deformations of the universal enveloping algebra U(so(3)), in particular, of some real forms of the Fairlie algebra .
Bibliography
- Yu. N. Bespalov, Yu. S. Samoĭlenko, and V. S. Shul'man, On families of operators connected by semilinear relations, in: Application of Methods of Functional Analysis in Mathematical Physics, Math. Inst. Akad. Nauk Ukrain. SSR, Kiev, (1991), 28-51, (Russian).
- C. Daskaloyannis, Generalized deformed oscillator and nonlinear algebras, J. Phys. A 24 (1991), L789-L794.
- V. D. Drinfeld, Quantum groups, Zap. nauch. sem. LOMI. 115 (1980), 19-49.
- D. B. Fairlie, Quantum deformations of SU(2), J. Phys. A: Math. Gen. 23 (1990), L183-L187.
- O. M. Gavrilik, A. U. Klimyk, Rpersentations of the q-deformed algebras
, , J. Math. Phys. 35 (1994), no. 2, 100-121. %preprint ITP-93-29E. - M. F. Gorodniy, G. B. Podkolzin, Irreducible representations of graduated Lie algebra, Spectral theory of operators and infinite-dimensional analisys, Math. Inst. Akad. Nauk Ukrain. SSR, Kiev, (1984), 66-77, (Russian).
- P. Halmos, A Hilbert space problem book, Van Nostrand, Princeton, 1967.
- M. Jimbo, q-difference analogue of U(n) and the Yang-Baxter equation, Lett. Math. Phys. 10 (1985), 63-69.
- M. Jimbo, Quantum R matrix related to the generalizated Toda system: an algebraic approach, Lect. Notes Phys. 246 (1986), 334-361.
- P. E. T. Jοrgensen, L. M. Schmitt, and R. F Werner, Positive representation of general commutation relations allowing Wick ordering, Preprint Osnabrück, (1993).
- A. A. Kirillov, Elements of the theory of representations, Springer, Berlin, (1970).
- S. Klimek and A. Lesniewski, Quantum Riemann surfaces. I. The unit disc, Commun. Math. Phys. 146 (1992), 103 - 122.
- M. Havliček, A. U. Klimyk, E. Pelantová, Fairlie algebra
: oscillator realizations, root of unity, reduction , J. Phys. A. (to appear) - S. A. Kruglyak and Yu. S. Samoĭlenko, On unitary equivalence of collections of self-adjoint operators, Funct. Anal. i Prilozhen. 14 (1980), no. 1, 60 - 62, (Russian).
- V. L. Ostrovskiĭ and Yu. S. Samoĭlenko, Unbounded operators satisfying non-Lie commutation relations, Repts. Math. Phys. 28 (1989), no. 1, 91-103.
- V. L. Ostrovskyĭ and Yu. S. Samoĭlenko, On pairs of self-adjoint operators, Seminar Sophus Lie 3 (1993), no. 2, 185-218.
- V. L. Ostrovskyĭ and Yu. S. Samoĭlenko, Representations of *-algebras and dynamical system, Non-linear Math. Phys. 2 (1995), no. 2, 133-150.
- V. L. Ostrovskyĭ and Yu. S. Samoĭlenko, On representations of the Heisenberg relations for the quantum e(2) group, Ukr. Mat. Zhurn. 47 (1995), no. 5, 700-710.
- V. L. Ostrovskyĭ and L. B. Turovskaya, Representations of *-algebras and multidimensional dynamical systems, Ukr. Mat. Zhurn. 47 (1995), no. 4, 488-497.
- A. Yu. Piryatinskaya and Yu. S. Samoĭlenko, Wild problems in representation theory of *-algebras with generators and relations, Ukr. Mat. Zhurn. 47 (1995), no. 1, 70-78.
- W. Pusz and S. L. Woronowicz, Twisted second quantization, Reports Math. Phys. 27 (1989), 231-257.
- N. Yu. Reshetikhin, L. A. Takhtajan, and L. D. Faddeev, Quantization of Lie groups and Lie algebras, Algebra i Analiz 1 (1989), no. 1, 178-206.
- W. Rudin, Functional Analysis, McGraw-Hill, New York (1973).
- Yu. S. Samoĭlenko, Spectral theory of families of selfadjoint operators, 'Naukova Dumka', Kiev (1984) (Russian).
- Yu. S. Samoĭlenko, V. S. Shul'man and L. B. Turovskaya, Semilinear relations and their *-representations, Preprint Augsburg, 1995.
- Yu. S. Samoĭlenko and L. B. Turovskaya, On *-representations of semilinear relations, in: Met hods of Functional Analysis in problems of Mathematical Physics, Inst. Math Acad. Sci Ukraine, Kiev, (1992), 97-108.
- Yu. S. Samoĭlenko and L. B. Turowska, Representations of cubic semilinear relations and real forms of the Fairlie algebra, Repts. Math. Phys. (to appear).
- K. Schmüdgen, Unbounded operator algebras and representation theory, Akademie-Verlag, Berlin, (1990).
- V. S. Shul'man, Multiplication operators and spectral synthesis, Dokl. Akad. Nauk SSSR 313 (1990), no. 5, (1047-1051); English transl. in Soviet Math. 42 (1991), no. 1.
- Ya. S. Soibelman and L. L. Vaksman, The algebra of functions on the quantum group SU(n+1) and odd-dimensional quantum spheres, Algebra i Analiz. 2 (1990), no. 5, 101-120.
- L. Turovskaya, Representations of some real forms of
, Algebras, groups and geometries, 12 (1995), 321-338. - E. Ye. Vaisleb, Representations of relations which connect a family of commuting operators with non-sefadjoint one, Ukrain. Math. Zh. 42 (1990), 1258 - 1262, (Russian).
- E. Ye. Vaisleb and Yu. S. Samoĭlenko, Representations of operator relations by unbounded operators and multi-dimensional dynamical systems, Ukrain. Math. Zh. 42 (1990), no. 9, 1011 - 1019, (Russian).
- S. L. Woronowicz, Quantum E(2) group and its Pontryagin dual, Lett. Math. Phys. 23 (1991), 251 - 263.
- D. P. Zhelobenko, Compact Lie groups and their representations, 'Nauka', Moscow, (1970) (Russian).