ArticleOriginal scientific text

Title

Semilinear relations and *-representations of deformations of so(3)

Authors 1, 1

Affiliations

  1. Institute of Mathematics, National Academy of Sciences of Ukraine, 3 Tereshchenkivska Str., Kiev, 252601 Ukraine

Abstract

We study a family of commuting selfadjoint operators =(Ak)k=1n, which satisfy, together with the operators of the family =(Bj)j=1n, semilinear relations ifij()Bjgij()=h(), (fij, gij, hj:n are fixed Borel functions). The developed technique is used to investigate representations of deformations of the universal enveloping algebra U(so(3)), in particular, of some real forms of the Fairlie algebra Uq(so(3)).

Bibliography

  1. Yu. N. Bespalov, Yu. S. Samoĭlenko, and V. S. Shul'man, On families of operators connected by semilinear relations, in: Application of Methods of Functional Analysis in Mathematical Physics, Math. Inst. Akad. Nauk Ukrain. SSR, Kiev, (1991), 28-51, (Russian).
  2. C. Daskaloyannis, Generalized deformed oscillator and nonlinear algebras, J. Phys. A 24 (1991), L789-L794.
  3. V. D. Drinfeld, Quantum groups, Zap. nauch. sem. LOMI. 115 (1980), 19-49.
  4. D. B. Fairlie, Quantum deformations of SU(2), J. Phys. A: Math. Gen. 23 (1990), L183-L187.
  5. O. M. Gavrilik, A. U. Klimyk, Rpersentations of the q-deformed algebras Uq(so2,1), Uq(so3,1), J. Math. Phys. 35 (1994), no. 2, 100-121. %preprint ITP-93-29E.
  6. M. F. Gorodniy, G. B. Podkolzin, Irreducible representations of graduated Lie algebra, Spectral theory of operators and infinite-dimensional analisys, Math. Inst. Akad. Nauk Ukrain. SSR, Kiev, (1984), 66-77, (Russian).
  7. P. Halmos, A Hilbert space problem book, Van Nostrand, Princeton, 1967.
  8. M. Jimbo, q-difference analogue of U(n) and the Yang-Baxter equation, Lett. Math. Phys. 10 (1985), 63-69.
  9. M. Jimbo, Quantum R matrix related to the generalizated Toda system: an algebraic approach, Lect. Notes Phys. 246 (1986), 334-361.
  10. P. E. T. Jοrgensen, L. M. Schmitt, and R. F Werner, Positive representation of general commutation relations allowing Wick ordering, Preprint Osnabrück, (1993).
  11. A. A. Kirillov, Elements of the theory of representations, Springer, Berlin, (1970).
  12. S. Klimek and A. Lesniewski, Quantum Riemann surfaces. I. The unit disc, Commun. Math. Phys. 146 (1992), 103 - 122.
  13. M. Havliček, A. U. Klimyk, E. Pelantová, Fairlie algebra Uq(so3): oscillator realizations, root of unity, reduction Uq(sl3)Uq(so3), J. Phys. A. (to appear)
  14. S. A. Kruglyak and Yu. S. Samoĭlenko, On unitary equivalence of collections of self-adjoint operators, Funct. Anal. i Prilozhen. 14 (1980), no. 1, 60 - 62, (Russian).
  15. V. L. Ostrovskiĭ and Yu. S. Samoĭlenko, Unbounded operators satisfying non-Lie commutation relations, Repts. Math. Phys. 28 (1989), no. 1, 91-103.
  16. V. L. Ostrovskyĭ and Yu. S. Samoĭlenko, On pairs of self-adjoint operators, Seminar Sophus Lie 3 (1993), no. 2, 185-218.
  17. V. L. Ostrovskyĭ and Yu. S. Samoĭlenko, Representations of *-algebras and dynamical system, Non-linear Math. Phys. 2 (1995), no. 2, 133-150.
  18. V. L. Ostrovskyĭ and Yu. S. Samoĭlenko, On representations of the Heisenberg relations for the quantum e(2) group, Ukr. Mat. Zhurn. 47 (1995), no. 5, 700-710.
  19. V. L. Ostrovskyĭ and L. B. Turovskaya, Representations of *-algebras and multidimensional dynamical systems, Ukr. Mat. Zhurn. 47 (1995), no. 4, 488-497.
  20. A. Yu. Piryatinskaya and Yu. S. Samoĭlenko, Wild problems in representation theory of *-algebras with generators and relations, Ukr. Mat. Zhurn. 47 (1995), no. 1, 70-78.
  21. W. Pusz and S. L. Woronowicz, Twisted second quantization, Reports Math. Phys. 27 (1989), 231-257.
  22. N. Yu. Reshetikhin, L. A. Takhtajan, and L. D. Faddeev, Quantization of Lie groups and Lie algebras, Algebra i Analiz 1 (1989), no. 1, 178-206.
  23. W. Rudin, Functional Analysis, McGraw-Hill, New York (1973).
  24. Yu. S. Samoĭlenko, Spectral theory of families of selfadjoint operators, 'Naukova Dumka', Kiev (1984) (Russian).
  25. Yu. S. Samoĭlenko, V. S. Shul'man and L. B. Turovskaya, Semilinear relations and their *-representations, Preprint Augsburg, 1995.
  26. Yu. S. Samoĭlenko and L. B. Turovskaya, On *-representations of semilinear relations, in: Met hods of Functional Analysis in problems of Mathematical Physics, Inst. Math Acad. Sci Ukraine, Kiev, (1992), 97-108.
  27. Yu. S. Samoĭlenko and L. B. Turowska, Representations of cubic semilinear relations and real forms of the Fairlie algebra, Repts. Math. Phys. (to appear).
  28. K. Schmüdgen, Unbounded operator algebras and representation theory, Akademie-Verlag, Berlin, (1990).
  29. V. S. Shul'man, Multiplication operators and spectral synthesis, Dokl. Akad. Nauk SSSR 313 (1990), no. 5, (1047-1051); English transl. in Soviet Math. 42 (1991), no. 1.
  30. Ya. S. Soibelman and L. L. Vaksman, The algebra of functions on the quantum group SU(n+1) and odd-dimensional quantum spheres, Algebra i Analiz. 2 (1990), no. 5, 101-120.
  31. L. Turovskaya, Representations of some real forms of Uq(sl(3)), Algebras, groups and geometries, 12 (1995), 321-338.
  32. E. Ye. Vaisleb, Representations of relations which connect a family of commuting operators with non-sefadjoint one, Ukrain. Math. Zh. 42 (1990), 1258 - 1262, (Russian).
  33. E. Ye. Vaisleb and Yu. S. Samoĭlenko, Representations of operator relations by unbounded operators and multi-dimensional dynamical systems, Ukrain. Math. Zh. 42 (1990), no. 9, 1011 - 1019, (Russian).
  34. S. L. Woronowicz, Quantum E(2) group and its Pontryagin dual, Lett. Math. Phys. 23 (1991), 251 - 263.
  35. D. P. Zhelobenko, Compact Lie groups and their representations, 'Nauka', Moscow, (1970) (Russian).
Pages:
21-40
Main language of publication
English
Published
1997
Exact and natural sciences