ArticleOriginal scientific textLeft-covariant differential calculi on
Title
Left-covariant differential calculi on
Authors 1, 1
Affiliations
- Fakultät für Mathematik und Informatik, Universität Leipzig, Augustusplatz 10, 04109 Leipzig, Germany
Abstract
We study dimensional left-covariant differential calculi on the quantum group . In this way we obtain four classes of differential calculi which are algebraically much simpler as the bicovariant calculi. The algebra generated by the left-invariant vector fields has only quadratic-linear relations and posesses a Poincaré-Birkhoff-Witt basis. We use the concept of universal (higher order) differential calculus associated with a given left-covariant first order differential calculus. It turns out that the space of left-invariant k-forms has the dimension as in the case of the corresponding classical Lie group SL(N).
Keywords
quantum Lie algebra, noncommutative differential calculus
Bibliography
- A. Connes, Non-commutative differential geometry, Publ. Math. IHES 62, 44-144 (1986).
- L. K. Faddeev, N. Yu. Reshetikhin and L. A. Takhtajan, Quantization of Lie groups and Lie algebras, Algebra and Analysis 1, 178-206 (1987).
- K. Schmüdgen and A. Schüler, Classification of bicovariant differential calculi on quantum groups of type A, B, C and D, Commun. Math. Phys. 167, 635-670 (1995).
- A. Sudbery, Non-commuting coordinates and differential operators, in: Quantum Groups, T. Curtright, D. Fairlie and C. Zachos (eds.), pp. 33-52, World Scientific, Singapore, 1991.
- S. L. Woronowicz, Twisted SU(2) group. An example of a non-commutative differential calculus, Publ. RIMS Kyoto Univ. 23, 177-181 (1987).
- S. L. Woronowicz, Differential calculus on compact matrix pseudogroups (quantum groups), Commun. Math. Phys. 122, 125-170 (1989).