ArticleOriginal scientific text
Title
Squared Hopf algebras and reconstruction theorems
Authors 1
Affiliations
- Mathematical Methods of Systems Analysis, Department of Applied Mathematics, Kiev Polytechnic Institute, 37 prosp. Peremogy, 252056 Kiev, Ukraine
Abstract
Given an abelian -linear rigid monoidal category , where is a perfect field, we define squared coalgebras as objects of cocompleted ⨂ (Deligne's tensor product of categories) equipped with the appropriate notion of comultiplication. Based on this, (squared) bialgebras and Hopf algebras are defined without use of braiding. If is the category of -vector spaces, squared (co)algebras coincide with conventional ones. If is braided, a braided Hopf algebra can be obtained from a squared one. Reconstruction theorems give equivalence of squared co- (bi-, Hopf) algebras in and corresponding fibre functors to (which is not the case with the usual definitions). Finally, squared quasitriangular Hopf coalgebra is a solution to the problem of defining quantum groups in braided categories.
Bibliography
- P. Deligne, phCatégories tannakiennes, in: The Grothendieck Festschrift, Vol. II, Progress in Math. 87, Boston, Basel, Berlin: Birkhäuser, 1991, 111-195.
- V. G. Drinfeld, phQuantum groups, Proceedings of the ICM, AMS, Providence, R.I. 1 (1987), 798-820.
- A. Grothendieck and J. L. Verdier, phPréfaisceuax, in: Théorie des topos et cohomologie étale des schémas (SGA 4), Lect. Notes Math. 269, Berlin, Heidelberg, New York: Springer-Verlag, 1972, 1-217.
- L. Hlavaty, phQuantized braided groups, J. Math. Phys. 35 (1994), no. 5, 2560-2569.
- S. MacLane, phCategories for the Working Mathematician, Springer-Verlag, 1971.
- B. Pareigis, phReconstruction of hidden symmetries, preprint 1994.
- N. Saavedra Rivano, phCatégories Tannakiennes, Lect. Notes Math. 265, Berlin, Heidelberg, New York: Springer-Verlag, 1972.
- P. Schauenburg, phTannaka duality for Arbitrary Hopf Algebras, Algebra-Berichte 66, München: R. Fisher, 1992.