ArticleOriginal scientific text

Title

Divergences in formal variational calculus and boundary terms in Hamiltonian formalism

Authors 1

Affiliations

  1. Institute for High Energy Physics 142 284, Protvino, Moscow region, Russia

Abstract

It is shown how to extend the formal variational calculus in order to incorporate integrals of divergences into it. Such a generalization permits to study nontrivial boundary problems in field theory on the base of canonical formalism.

Bibliography

  1. [Ald] S. J. Aldersley, Higher Eulerian operators and some of their applications, J. Math. Phys. 20 (1979), 522-531.
  2. [And76] I. M. Anderson, Mathematical foundations of the Einstein field equations, Ph. D. thesis, Univ. of Arizona, 1976.
  3. [And78] I. M. Anderson, Tensorial Euler-Lagrange expressions and conservation laws, Aequationes Math. 17 (1978), 255-291.
  4. [And92] I. M. Anderson, Introduction to the variational bicomplex, in: Mathematical aspects of classical field theory, M. J. Gotay, J. E. Marsden and V. Moncrief (eds.), Contemp. Math. 132, AMS, Providence, 1992.
  5. [Arn] V. I. Arnol'd, Mathematical methods of classical mechanics, Nauka, Moscow, 1974 (in Russian).
  6. [ADM] R. Arnowitt, S. Deser and C. W. Misner, Consistency of the canonical reduction of General Relativity, J. Math. Phys. 1 (1960), 434-439.
  7. [BH] J.D. Brown and M. Henneaux, On the Poisson brackets of differential generators in classical field theory, J. Math. Phys. 27 (1986), 489-491.
  8. [Dorf] I. Dorfman, Dirac Structures and Integrability of Nonlinear Evolution Equations, John Wiley and Sons, New York, 1993.
  9. [GD] I. M. Gel'fand and L. A. Dickey, Asymptotics of Sturm-Liouville equation resolvent and algebra of Korteweg-de Vries equation, Uspekhi Mat. Nauk 30 (1975), 67-100 (in Russian).
  10. [JK] J. Jezierski and J. Kijowski, The localization of energy in gauge field theories and in linear gravitation, Gen. Relativity Gravitation 22 (1990), 1283-1307.
  11. [KT] J. Kijowski and W. M. Tulczyjew, A symplectic framework for field theories, Lecture Notes in Phys. 107, Springer, New York, 1979.
  12. [KMGZ] M. D. Kruskal, R. M. Miura, C. S. Gardner and N. J. Zabusky, Korteweg-de Vries equation and generalizations. V. Uniqueness and nonexistence of polynomial conservation laws, J. Math. Phys. 11 (1970), 952-960.
  13. [LMMR] D. Lewis, J. Marsden, R. Montgomery and T. Ratiu, The Hamiltonian structure for dynamic free boundary problems, Phys. D 18 (1986), 391-404.
  14. [LR] A. N. Leznov, A. V. Razumov, The canonical symmetry for integrable systems, J. Math. Phys. 35 (1994), 1738-1754.
  15. [Nij] A. Nijenhuis, Jacobi-type identities for bilinear differential concomitants of certain tensor fields. I, Indag. Math. 17 (1955), 390-397.
  16. [Olv84] P. J. Olver, Hamiltonian perturbation theory and water waves, in: Fluids and Plasmas: Geometry and Dynamics, J. E. Marsden (ed.), Contemp. Math. 28, AMS, Providence, 1984.
  17. [Olv86] P. J. Olver, Applications of Lie Groups to Differential Equations, Graduate Texts in Mathematics, Springer-Verlag, New York, 1986.
  18. [RT] T. Regge and C. Teitelboim, Role of surface integrals in Hamiltonian formalism of General Relativity, Ann. Physics 88 (1974), 286-318.
  19. [Sol85] V. O. Soloviev, Algebra of asymptotic Poincaré group generators in General Relativity, Teoret. Mat. Fiz. 65 (1985), 400-415 (in Russian).
  20. [Sol92] V. O. Soloviev, How canonical are Ashtekar's variables?, Phys. Lett. B 292 (1992), 30-34.
  21. [Sol93] V. O. Soloviev, Boundary values as Hamiltonian variables. I. New Poisson brackets, J. Math. Phys. 34 (1993), 5747-5769.
  22. [Sol94] V. O. Soloviev, Boundary values as Hamiltonian variables. II. Graded structures, q-alg/9501017, Preprint IHEP 94-145, Protvino, 1994.
Pages:
373-388
Main language of publication
English
Published
1997
Exact and natural sciences