ArticleOriginal scientific text

Title

String picture of gauge fields

Authors 1

Affiliations

  1. Institute of Theoretical Physics, Warsaw University, Hoża 69, 00-681 Warsaw, Poland

Abstract

The article reviews attempts to formulate the theory of gauge fields in terms of a string theory.

Bibliography

  1. M. F. Atiyah and L. Jeffrey, Topological lagrangians and cohomology, J. Geom. Phys. 7 (1990) 119.
  2. W. A. Bardeen, I. Bars, A. J. Hanson and R. D. Peccei, Study of the longitudinal kink modes of the string, Phys. Rev. D 13 (1976), 2364.
  3. I. Bars, A quantum string theory of hadrons and its relation to quantum chromodynamics in two dimensions, Nuclear Phys. B 111 (1976), 1744.
  4. S. J. Blank and C. Curley, Desingularizing maps of corank one, Proc. Amer. Math. Soc. 80 (1980), 483.
  5. S. Corder, G. Moore and S. Ramgoolam, Large N 2D Yang-Mills theory and topological string theory, Yale preprint YCTP-P23-93; hep-th/9402107.
  6. W. Fulton, Hurwitz schemes and irreducibility of moduli of algebraic curves, Ann. of Math. (2) 90 (1969), 542.
  7. M. Golubitsky, V. Guillemin, Stable Mappings and Their Singularities, Springer, New York - Heidelberg, 1973.
  8. D. J. Gross, Two-dimensional QCD as a string theory, 400 (1993), 161; hep-th/9212149.
  9. D. J. Gross and W. Taylor, IV, Twists and loops in the string theory of two-dimensional QCD, 403 (1993), 395; hep-th/9303076.
  10. D. J. Gross and W. Taylor, IV, Two-dimensional QCD is a string theory, 400 (1993), 181; hep-th/9301068.
  11. J. Harris and D. Mumford, On the Kodaira dimension of the moduli space of curves, Invent. Math. 67 (1982), 23.
  12. W. Hirsch, Immersions of Manifolds, Trans. Amer. Math. Soc. 93 (1959), 242.
  13. G. 't Hooft, A planar diagram theory for strong interactions, 72 (1974), 461.
  14. G. 't Hooft, A two-dimensional model for mesons, 75 (1974), 461.
  15. P. Horava, Topological Rigid String Theory and Two Dimensional QCD, PUPT-1547, June 1995; hep-th/9507060.
  16. P. Horava, Topological Strings and QCD in Two Dimensions, to appear in: Proc. of The Cargese Workshop, 1993; hep-th/9311156.
  17. R. Lashof and S. Smale, On immersions of manifolds in Euclidean space, 68 (1958), 562.
  18. V. Mathai and D. Quillen, Superconnections, Thom classes, and equivariant differential forms, Topology 25 (1986), 85.
  19. A. Migdal, Recursion equations in gauge field theories, Zh. Èksp. Teoret. Fiz. 69 (1975), 810; translated in Sov. Phys. JETP 42 (1975), 413.
  20. J. Pawełczyk, Immersions and folds in string theories of gauge fields, Internat. J. Modern Phys. A 11 (1996), 2661; hep-th/9604053.
  21. J. Pawełczyk, Two-dimensional string-theory model with no folds, 74 (1995), 3924; hep-th/9403175.
  22. B. Rusakov, Loop averages and partition function in U(N) gauge theory on two-dimensional manifolds, 5 (1990), 693.
  23. S. Smale, Regular curves on Riemannian manifolds, Trans. Amer. Math. Soc. 87 (1958), 492.
  24. S. Smale, The classification of immersions of spheres in Euclidean spaces, 69 (1959), 327.
  25. W. Thurston, The Geometry and Topology of Three-manifolds, Ch. 13, Princeton notes, 1977 (unpublished).
  26. H. Whitney, On singularities of maps of Euclidean spaces: R2R2 case, Ann. of Math. (2) 62 (1955), 374.
  27. H. Whitney, The self-intersections of a smooth n-manifold in 2n-space, 45 (1944), 220.
  28. E. Witten, Topological quantum field theory, 117 (1988), 353.
Pages:
363-371
Main language of publication
English
Published
1997
Exact and natural sciences