PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
1997 | 39 | 1 | 363-371
Tytuł artykułu

String picture of gauge fields

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The article reviews attempts to formulate the theory of gauge fields in terms of a string theory.
Słowa kluczowe
Rocznik
Tom
39
Numer
1
Strony
363-371
Opis fizyczny
Daty
wydano
1997
Twórcy
  • Institute of Theoretical Physics, Warsaw University, Hoża 69, 00-681 Warsaw, Poland
Bibliografia
  • [1] M. F. Atiyah and L. Jeffrey, Topological lagrangians and cohomology, J. Geom. Phys. 7 (1990) 119.
  • [2] W. A. Bardeen, I. Bars, A. J. Hanson and R. D. Peccei, Study of the longitudinal kink modes of the string, Phys. Rev. D 13 (1976), 2364.
  • [3] I. Bars, A quantum string theory of hadrons and its relation to quantum chromodynamics in two dimensions, Nuclear Phys. B 111 (1976), 1744.
  • [4] S. J. Blank and C. Curley, Desingularizing maps of corank one, Proc. Amer. Math. Soc. 80 (1980), 483.
  • [5] S. Corder, G. Moore and S. Ramgoolam, Large N 2D Yang-Mills theory and topological string theory, Yale preprint YCTP-P23-93; hep-th/9402107.
  • [6] W. Fulton, Hurwitz schemes and irreducibility of moduli of algebraic curves, Ann. of Math. (2) 90 (1969), 542.
  • [7] M. Golubitsky, V. Guillemin, Stable Mappings and Their Singularities, Springer, New York - Heidelberg, 1973.
  • [8] D. J. Gross, Two-dimensional QCD as a string theory, 400 (1993), 161; hep-th/9212149.
  • [9] D. J. Gross and W. Taylor, IV, Twists and loops in the string theory of two-dimensional QCD, 403 (1993), 395; hep-th/9303076.
  • [10] D. J. Gross and W. Taylor, IV, Two-dimensional QCD is a string theory, 400 (1993), 181; hep-th/9301068.
  • [11] J. Harris and D. Mumford, On the Kodaira dimension of the moduli space of curves, Invent. Math. 67 (1982), 23.
  • [12] W. Hirsch, Immersions of Manifolds, Trans. Amer. Math. Soc. 93 (1959), 242.
  • [13] G. 't Hooft, A planar diagram theory for strong interactions, 72 (1974), 461.
  • [14] G. 't Hooft, A two-dimensional model for mesons, 75 (1974), 461.
  • [15] P. Horava, Topological Rigid String Theory and Two Dimensional QCD, PUPT-1547, June 1995; hep-th/9507060.
  • [16] P. Horava, Topological Strings and QCD in Two Dimensions, to appear in: Proc. of The Cargese Workshop, 1993; hep-th/9311156.
  • [17] R. Lashof and S. Smale, On immersions of manifolds in Euclidean space, 68 (1958), 562.
  • [18] V. Mathai and D. Quillen, Superconnections, Thom classes, and equivariant differential forms, Topology 25 (1986), 85.
  • [19] A. Migdal, Recursion equations in gauge field theories, Zh. Èksp. Teoret. Fiz. 69 (1975), 810; translated in Sov. Phys. JETP 42 (1975), 413.
  • [20] J. Pawełczyk, Immersions and folds in string theories of gauge fields, Internat. J. Modern Phys. A 11 (1996), 2661; hep-th/9604053.
  • [21] J. Pawełczyk, Two-dimensional string-theory model with no folds, 74 (1995), 3924; hep-th/9403175.
  • [22] B. Rusakov, Loop averages and partition function in U(N) gauge theory on two-dimensional manifolds, 5 (1990), 693.
  • [23] S. Smale, Regular curves on Riemannian manifolds, Trans. Amer. Math. Soc. 87 (1958), 492.
  • [24] S. Smale, The classification of immersions of spheres in Euclidean spaces, 69 (1959), 327.
  • [25] W. Thurston, The Geometry and Topology of Three-manifolds, Ch. 13, Princeton notes, 1977 (unpublished).
  • [26] H. Whitney, On singularities of maps of Euclidean spaces: $R^2 \to R^2$ case, Ann. of Math. (2) 62 (1955), 374.
  • [27] H. Whitney, The self-intersections of a smooth n-manifold in 2n-space, 45 (1944), 220.
  • [28] E. Witten, Topological quantum field theory, 117 (1988), 353.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-bcpv39z1p363bwm
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.