ArticleOriginal scientific text

Title

The L2 metric in gauge theory: an introduction and some applications

Authors 1

Affiliations

  1. Department of Mathematics, University of Florida Gainesville, Florida 32611, USA

Abstract

We discuss the geometry of the Yang-Mills configuration spaces and moduli spaces with respect to the L2 metric. We also consider an application to a de Rham-theoretic version of Donaldson's μ-map.

Bibliography

  1. [CE] J. Cheeger and D. G. Ebin, Comparison Theorems in Riemannian Geometry, North-Holland, Amsterdam, 1975.
  2. [DMM] H. Doi, Y. Matsumoto, and T. Matumoto, An explicit formula of the metric on the moduli space of BPST-instantons over S4, in: A Fête of Topology, Academic Press, 1987, 543-556.
  3. [D1] S. K. Donaldson, An application of gauge theory to four-dimensional topology, J. Differential Geom. 18 (1983), 279-315.
  4. [D2] S. K. Donaldson, Compactification and completion of Yang-Mills moduli spaces, in: Differential Geometry, Proc. Conf. Peniscola 1988, F. J. Carreras et al. (ed.), Lecture Notes in Math. 1410, Springer, Berlin, 1989, 145-160.
  5. [DK] S. K. Donaldson, P. Kronheimer, The Geometry of Four-Manifolds, Oxford University Press, New York, 1990.
  6. [F] P. Feehan, Geometry of the ends of the moduli space of anti-self-dual connections, J. Differential Geom. 42 (1995), 465-553.
  7. [FU] D. S. Freed and K. K. Uhlenbeck, Instantons and Four-Manifolds, second edition, Springer, New York, 1991.
  8. [G1] D. Groisser, The geometry of the moduli space of {bfCP2} instantons, Invent. Math. 99 (1990), 393-409.
  9. [G2] D. Groisser, Curvature of Yang-Mills moduli spaces near the boundary, I, Comm. Anal. Geom. 1 (1993), 139-216.
  10. [G3] D. Groisser, Totally geodesic boundaries of Yang-Mills moduli spaces, Preprint, 1996.
  11. [GP1] D. Groisser and T. H. Parker, The Riemannian geometry of the Yang-Mills Moduli Space, Comm. Math. Phys. 112 (1987), 663-689.
  12. [GP2] D. Groisser and T. H. Parker, The geometry of the Yang-Mills moduli space for definite manifolds, J. Differential Geom. 29 (1989), 499-544.
  13. [GP3] D. Groisser and T. H. Parker, Semiclassical Yang-Mills Theory I, Instantons, Comm. Math. Phys. 135 (1990), 101-140.
  14. [GP4] D. Groisser and T. H. Parker, Differential forms on the Yang-Mills moduli space, in preparation.
  15. [GS] D. Groisser and L. Sadun, Simple type and the boundary of moduli space, in preparation.
  16. [H] L. Habermann, On the geometry of the space of Sp(1)-instantons with Pontrjagin index 1 on the 4-sphere, Ann. Global Anal. Geom. 6 (1988), 3-29.
  17. [K] K. Kobayashi, Three Riemannian metrics on the moduli space of 1-instantons over {bfCP2}, Hiroshima Math. J. 19 (1989), 243-249.
  18. [MM] K. B. Marathe and G. Martucci, The Mathematical Foundations of Gauge Theories, North-Holland, Amsterdam, 1992.
  19. [M] T. Matumoto, Three Riemannian metrics on the moduli space of BPST-instantons over S4, Hiroshima Math. J. 19 (1989), 221-224.
  20. [MV] P. K. Mitter and C. M. Viallet, On the bundle of connections and the gauge orbit manifold in Yang-Mills theory, Comm. Math. Phys. 79 (1981), 457-472.
  21. [S] I. M. Singer, The Geometry of the Orbit Space for Nonabelian Gauge Theories, Phys. Scripta 24 (1981), 817-820.
Pages:
317-329
Main language of publication
English
Published
1997
Exact and natural sciences