ArticleOriginal scientific text

Title

The singularity structureοf the Yang-Mills configuration space

Authors 1

Affiliations

  1. NIKHEF-H, Kruislaan 409, NL-1098 SJ Amsterdam, The Netherlands

Abstract

The geometric description of Yang–Mills theories and their configuration space calM is reviewed. The presence of singularities in M is explained and some of their properties are described. The singularity structure is analysed in detail for structure group SU(2). This review is based on [28].

Bibliography

  1. A. Yu. Alekseev and V. Schomerus, Representation theory of Chern–Simons observables, preprint q-alg/9503016.
  2. L. Alvarez-Gaumé and P. Ginsparg, The topological meaning of non-abelian anomalies, Nuclear Phys. B 243 (1984), 449.
  3. J. M. Arms, The structure of the solution set for the Yang–Mills equations, Math. Proc. Cambridge Philos. Soc. 90 (1981), 361.
  4. J. M. Arms, J. E. Marsden and V. Moncrief, Symmetry and bifurcations of momentum mappings, Comm. Math. Phys. 78 (1981), 455.
  5. A. Ashtekar and J. Lewandowski, Differential geometry on the space of connections via graphs and projective limits, preprint hep-th/9412073.
  6. A. Ashtekar, D. Marol f and J. Mourão, Integration on the space of connections modulo gauge transformations, preprint gr-qc/9403042.
  7. M. Asorey, F. Falceto, J. L. López and G. Luzón, Nodes, monopoles and confinement in 2+1-dimensional gauge theories, Phys. Lett. B 349 (1995), 125.
  8. M. Asorey and P. K. Mitter, Regularized, continuum Yang–Mills process and Feynman–Kac functional integral, Comm. Math. Phys. 80 (1981), 43.
  9. M. Asorey and P. K. Mitter, Cohomology of the Yang–Mills gauge orbit space and dimensional reduction, Ann. Inst. H. Poincaré Phys. Théor. A45 (1986), 61.
  10. M. Atiyah and J. Jones, Topological aspects of Yang–Mills theory, Comm. Math. Phys. 61 (1978), 97.
  11. M. Audin, The Topology of Torus Actions on Symplectic Manifolds, Birkhäuser, Basel 1991.
  12. P. van Baal, More (thoughts on) Gribov copies, Nuclear Phys. B 369 (1992), 259.
  13. P. van Baal and B. van den Heuvel, Zooming in on the SU(2) fundamental domain, Nuclear Phys. B 417 (1994), 215.
  14. O. Babelon and C. M. Viallet, The geometrical interpretation of the Faddeev–Popov determinant, Phys. Lett. B 85 (1979), 246.
  15. O. Babelon and C. M. Viallet, On the Riemannian geometry of the configuration space of gauge theories, Comm. Math. Phys. 81 (1981), 515.
  16. J. C. Baez, Generalized measures in gauge theory, Lett. Math. Phys. 31 (1994), 213.
  17. R. Bott, Morse theory and the Yang–Mills equations, in: Differential geometrical methods in mathematical physics, Lecture Notes in Math. 836, Springer, Berlin, 1980, p. 269.
  18. J. P. Brasselet and M. Ferrarotti, Regular differential forms on stratified spaces, preprint Pisa, Sept. 1992.
  19. A. Chodos, Canonical quantization of non-Abelian gauge theories in the axial gauge, Phys. Rev. D (3) 17 (1978), 2624.
  20. M. Daniel and C. M. Viallet, The gauge fixing problem around classical solutions of the Yang–Mills theory, Phys. Lett. B 76 (1978), 458.
  21. G. Dell’Antonio and D. Zwanziger, Every gauge orbit passes inside the Gribov horizon, Comm. Math. Phys. 138 (1991), 291.
  22. S. K. Donaldson, Polynomial invariants for smooth four-manifolds, Topology 29 (1990), 257.
  23. S. K. Donaldson and P. B. Kronheimer, The Geometry of Four-Manifolds, Clarendon Press, Oxford 1990.
  24. J. Eichhorn, T. Friedrich, Seiberg–Witten theory, this volume.
  25. M. Ferrarotti, Some results about integration on regular stratified sets, Ann. Mat. Pura Appl. (4) CL (1988), 263.
  26. A. E. Fischer, Resolving the singularities in the space of Riemannian geometries, J. Math. Phys. 27 (1986), 718.
  27. D. S. Freed, On determinant line bundles, in: Mathematical Aspects of String Theory, S. T. Yau, ed., World Scientific, Singapore, 1987, p. 189.
  28. J. Fuchs, M. G. Schmidt and C. Schweigert, On the configuration space of gauge theories, Phys. B 426 (1994), 107.
  29. H. B. Gao and H. Römer, Some features of blown-up non-linear σ-models, Classical Quantum Gravity 12 (1995), 17.
  30. M. J. Gotay, Reduction of homogeneous Yang–Mills fields, J. Geom. Phys. 6 (1989), 349.
  31. V. Gribov, Quantization of nonabelian gauge theories, Nuclear Phys. B 139 (1978), 1.
  32. P. Griffiths and J. Harris, Principles of Algebraic Geometry, Wiley Interscience, New York 1978.
  33. A. Heil, A. Kersch, N. Papadopoulos, B. Reifenhäuser and F. Scheck, Anomalies from nonfree action of the gauge group, Ann. Physics 200 (1990), 206.
  34. A. Heil, A. Kersch, N. Papadopoulos, B. Reifenhäuser and F. Scheck, Structure of the space of reducible connections for Yang–Mills theories, J. Geom. Phys. 7 (1990), 489.
  35. W. Kondracki and J. S. Rogulski, On the stratification of the orbit space for the action of automorphisms on connections, Dissertationes Math. (Rozprawy Mat.) CCL (1986), 1.
  36. W. Kondracki and P. Sadowski, Geometric structure on the orbit space of gauge connections, J. Geom. Phys. 3 (1986), 421.
  37. E. Langmann, M. Salmhofer and A. Kovner, Consistent axial-like gauge fixing on hypertori, Modern Phys. Lett. A 9 (1994), 2913.
  38. P. K. Mitter and C. M. Viallet, On the bundle of connections and the gauge orbit manifold in Yang–Mills theory, Comm. Math. Phys. 79 (1981), 457.
  39. V. Moncrief, Reduction of the Yang–Mills equations, in: Differential geometrical methods in mathematical physics, Lecture Notes in Math. 836, Springer, Berlin, 1980, p. 276.
  40. M. Narasimhan and T. Ramadas, Geometry of SU(2) gauge fields, Comm. Math. Phys. 67 (1979), 121.
  41. L. Rozansky, A contribution of the trivial connection to the Jones polynomial and Witten’s invariant of 3d manifolds I. and II., preprints hep-th/9401069 and hep-th/9403021.
  42. N. Seiberg, Exact results on the space of vacua of four-dimensional SUSY gauge theories, Phys. Rev. D (3) 49 (1994), 6857.
  43. M. A. Semenov-Tyan-Shanskiĭ and V. A. Franke, A variational principle for the Lorentz condition and restriction of the domain of path integration in non-abelian gauge theory (Russian), Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 120 (1982), 159; transl. J. Soviet. Math. 34 (1986), 1999.
  44. I. M. Singer, Some remarks on the Gribov ambiguity, Comm. Math. Phys. 60 (1978), 7.
  45. I. M. Singer, The geometry of the orbit space for nonabelian gauge theories, Phys. Scripta T 24 (1981), 817.
  46. K. K. Uhlenbeck, Removable singularities in Yang–Mills fields, Comm. Math. Phys. 83 (1982), 11.
  47. E. Witten, Monopoles and four manifolds, Math. Res. Lett. 1 (1994), 769.
  48. C. N. Yang and R. M. Mills, Conservation of isotopic spin and isotopic gauge invariance, Phys. Rev. (2) 96 (1954), 191.
  49. D. Zwanziger, Non-perturbative modification of the Faddeev–Popov formula and banishment of the naive vacuum, Nuclear Phys. B 209 (1982), 336.
Pages:
287-299
Main language of publication
English
Published
1997
Exact and natural sciences