ArticleOriginal scientific text

Title

The configuration space of gauge theory on open manifolds of bounded geometry

Authors 1, 2

Affiliations

  1. Fachbereich Mathematik, Universität Greifswald Jahnstraße 15a, 17487 Greifswald, Germany
  2. GMD–FIRST, Rudower Chaussee 5, Geb. 13.10, 12489 Berlin, Germany

Abstract

We define suitable Sobolev topologies on the space {calC}P(Bk,f) of connections of bounded geometry and finite Yang-Mills action and the gauge group and show that the corresponding configuration space is a stratified space. The underlying open manifold is assumed to have bounded geometry.

Bibliography

  1. N. Bourbaki, Éléments de mathématique, Fasc. XXXIII, Variétés différentielles et analytiques, Fascicule de résultates (Paragraphes 1 à 7), Hermann, Paris, 1971.
  2. N. Bourbaki, Éléments de mathématique, Fasc. XXXVIII, Groupes et algèbres de Lie, Hermann, Paris, 1972.
  3. J. Eichhorn, Elliptic differential operators on noncompact manifolds, in: Seminar Analysis of the Karl-Weierstrass-Institute of Mathematics (Berlin, 1986/87), Teubner-Texte Math. 106, Leipzig, 1988, 4-169.
  4. J. Eichhorn, Gauge theory on open manifolds of bounded geometry, Internat. J. Modern Phys. A 7 (1992), 3927-3977.
  5. J. Eichhorn, The manifold structure of maps between open manifolds, Ann. Global Anal. Geom. 11 (1993), 253-300.
  6. J. Eichhorn, Spaces of Riemannian metrics on open manifolds, Results Math. 27 (1995), 256-283.
  7. J. Eichhorn, The boundedness of connection coefficients and their derivatives, Math. Nachr. 152 (1991), 145-158.
  8. J. Eichhorn, Differential operators with Sobolev coefficients, in preparation.
  9. J. Eichhorn, The invariance of Sobolev spaces over noncompact manifolds, in: Symposium 'Partial Differential Equations' (Holzhau, 1988), Teubner-Texte Math. 112, Leipzig, 1989, 73-107.
  10. J. Eichhorn and J. Fricke, The module structure theorem for Sobolev spaces on open manifolds, Math. Nachr. (to appear).
  11. J. Eichhorn and R. Schmid, Form preserving diffeomorphisms on open manifolds, Math. Nachr. (to appear).
  12. A. E. Fischer, The internal symmetry group of a connection on a principal fibre bundle with applications to gauge field theory, Comm. Math. Phys. 113 (1987), 231-262.
  13. G. Heber, Die Topologie des Konfigurationsraumes der Yang-Mills Theorie über offenen Mannigfaltigkeiten beschränkter Geometrie, Ph.D. thesis, Greifswald, 1994.
  14. W. Kondracki and J. Rogulski, On the stratification of the orbit space for the action of automorphisms on connections, Dissertationes Math. (Rozprawy Mat.) 250 (1986).
  15. W. Kondracki and P. Sadowski, Geometric structure on the orbit space of gauge connections, J. Geom. Phys. 3 (1986), 421-434.
Pages:
269-286
Main language of publication
English
Published
1997
Exact and natural sciences