Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
1997 | 39 | 1 | 183-199
Tytuł artykułu

Vacuum Structure of 2+1-Dimensional Gauge Theories

Treść / Zawartość
Warianty tytułu
Języki publikacji
We analyse some non-perturbative properties of the Yang-Mills vacuum in two-dimensional spaces in the presence of Chern-Simons interactions. We show that the vacuum functional vanishes for some gauge field configurations. We have identified some of those nodal configurations which are characterized by the property of carrying a non-trivial magnetic charge. In abelian gauge theories this fact explains why magnetic monopoles are suppressed by Chern-Simons interactions. In non-abelian theories it suggests a relevant role for nodal gauge field configurations in the confinement mechanism of Yang-Mills theories. In topological Chern-Simons theories nodal configurations belong to Atiyah-Bott strata with non-null codimension in the space of gauge field configurations. In the presence of external static quarks some nodes of the vacuum functional with non-trivial magnetic charge are removed and they are responsible for the increase of vacuum energy.
Słowa kluczowe
Opis fizyczny
  • Departamento de Física Teórica, Facultad de Ciencias, Universidad de Zaragoza, 50009 Zaragoza, Spain
  • Departamento de Física Teórica, Facultad de Ciencias, Universidad de Zaragoza, 50009 Zaragoza, Spain
  • Departamento de Física Teórica, Facultad de Ciencias, Universidad de Zaragoza, 50009 Zaragoza, Spain
  • Departamento de Física Teórica, Facultad de Ciencias, Universidad de Zaragoza, 50009 Zaragoza, Spain
  • [1] I. Affleck, J. Harvey, L. Palla, G. W. Semenoff, The Chern-Simons Term Versus the Monopole, Nuclear Phys. B 328 (1989), 575-584.
  • [2] M. Asorey, Spin and Statistics in Topologically Massive Theories, Phys. Lett. B 174 (1986), 199-202.
  • [3] M. Asorey, Topological Effects in Yang-Mills Theory in 2+1 Dimensions, in: Fields and Geometry, Ed. A. Jadczyk, World Scientific, Singapore, 1986, 31-47.
  • [4] M. Asorey, Topological Phases of Quantum Theories. Chern-Simons Theory, J. Geom. Phys. 11 (1993), 63-94.
  • [5] M. Asorey, S. Carlip, F. Falceto, Chern-Simons States and Topologically Massive Gauge Theories, Phys. Lett. B 312 (1993) 477-485.
  • [6] M. Asorey, F. Falceto, J. L. Lopez, G. Luzon, Nodes, Monopoles and Confinement in 2+1-Dimensional Gauge Theories, Phys. Lett. B 349 (1995), 125-130.
  • [7] M. Asorey, P. K. Mitter, Cohomology of the Yang-Mills Gauge Orbit Space and Dimensional Reduction, Ann. Inst. H. Poincaré Phys. Théor. 45 (1986), 61-78.
  • [8] M. Asorey, P. K. Mitter, Cohomology of the Gauge Orbit Space and 2+1-Dimensional Yang-Mills Theory with Chern-Simons Term, Phys. Lett. B 153 (1985), 147-152.
  • [9] M. Atiyah, R. Bott, The Yang-Mills Equations over Riemann Surfaces, Philos. Trans. Roy. Soc. London Ser. A 308 (1982), 523-615.
  • [10] V. L. Berezinskii, Destruction of Long-Range Order in One-Dimensional and Two-Dimensional Systems Having a Continuous Symmetry Group. I: Classical Systems, Zh. Eksper. Teoret. Fiz. 59 (1970), 907-920 (in Russian); translated as Soviet Physics JETP 32 (1971), 493-500.
  • [11] M. Bos, V. P. Nair, U(1) Chern-Simons and c=1 Conformal Blocks, Phys. Lett. B 223 (1989), 61-66.
  • [12] M. Bos, V. P. Nair, Coherent State Quantization of Chern-Simons Theory, Internat. J. Modern Phys. A 5 (1990), 959-988.
  • [13] M. Crescimanno, S. A. Hotes, Monopoles, Modular Invariance and Chern-Simons Theory, Nuclear Phys. B 372 (1992), 683-700.
  • [14] S. Deser, R. Jackiw, S. Templeton, Three-Dimensional Massive Gauge Theories, Phys. Rev. Lett. 48 (1982), 975-978.
  • [15] S. Deser, R. Jackiw, S. Templeton, Topologically Massive Gauge Theories, Ann. Physics 140 (1982), 372-411.
  • [16] M. C. Diamantini, P. Sodano, C. A. Trugenberger, Topological Excitations In Compact Maxwell-Chern-Simons Theory, Phys. Rev. Lett. 71 (1993), 1969-1972.
  • [17] F. Falceto, K. Gawędzki, Chern-Simons States at Genus One, Comm. Math. Phys. 159 (1994), 549-579.
  • [18] R. Feynman, The Qualitative Behavior of Yang-Mills Theory in (2+1)-Dimensions, Nuclear Phys. B 188 (1981), 479-512.
  • [19] K. Gawędzki, A. Kupiainen, SU(2) Chern-Simons Theory at Genus Zero, Comm. Math. Phys. 135 (1991), 531-546.
  • [20] G.'t Hooft, Gauge Theories with Unified Weak, Electromagnetic and Strong Interactions, High Energy Physics, Ed. A. Zichichi, Ed. Compositori, Bologna, 1976.
  • [21] G.'t Hooft, Topology of the Gauge Condition and new Confinement Phases in non-Abelian Gauge Theories, Nuclear Phys. B 190 [FS3] (1981), 455-478.
  • [22] R. Jackiw, Gauge Theories in Three Dimensions (= at High Temperature), in: Gauge Theories of the Eighties, Eds. E. Ratio, J. Lindfords, Lecture Notes in Physics 181, Springer, 1983, 157-219.
  • [23] A. Kupiainen, J. Mickelsson, What is the Effective Action in Two Dimensions?, Phys. Lett. B 185 (1987), 107-110.
  • [24] S. Mandelstam, Vortices and Quark Confinement in on-Abelian Gauge Theories, Phys. Rep. 23 (1976), 245-249.
  • [25] S. Mandelstam, General Introduction to Confinement, Phys. Rep. 67 (1980), 109-121.
  • [26] A. Polyakov, Compact Gauge Fields and the Infrared Catastrophe, Phys. Lett. B 59 (1975), 82-84.
  • [27] A. Polyakov, Quark Confinement and Topology of Gauge Groups, Nuclear Phys. 120 (1977), 429-458.
  • [28] A. P. Polychronakos, On the Quantization of the Coefficient of the Abelian Chern-Simons Term, Phys. Lett. B 241 (1990), 37-40.
  • [29] A. P. Polychronakos, Abelian Chern-Simons Theories and Conformal Blocks, preprint UFIFT-89-9 (1989).
  • [30] N. Seiberg, E. Witten, Electro-Magnetic Duality, Monopole Condensation, and Confinement in N=2 Supersymmetric Yang-Mills Theory, Nuclear Phys. B 426 (1994), 19-52; Erratum: ibid. 430 (1994), 485-486.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.