ArticleOriginal scientific text
Title
Translation foliations of codimension one on compact affine manifolds
Authors 1
Affiliations
- Geometría y Topología, Facultad de Ciencias Ap. 59, Universidad de Málaga, 29080 Málaga, Spain
Abstract
Consider two foliations and , of dimension one and codimension one respectively, on a compact connected affine manifold . Suppose that ; and . In this paper we show that either is given by a fibration over , and then has a great degree of freedom, or the trace of is given by a few number of types of curves which are completely described. Moreover we prove that has a transverse affine structure.
Bibliography
- R. Brouzet, P. Molino and F. J. Turiel, Géométrie des systèmes bihamiltoniens, Indag. Math. (N.S.) 4(3) (1993), 269-296.
- G. Châtelet and H. Rosenberg, Manifolds which admit
actions, Inst. Hautes Études Sci. Publ. Math. 43 (1974), 245-260. - G. Darboux, Leçons sur la Théorie générale de Surfaces, Gauthier-Villars, Paris.
- C. Godbillon, Feuilletages: études géométriques, Progr. Math. 98, Birkhäuser, 1991.
- I. M. Gelfand and I. Zakharevich, Webs, Veronese curves, and Bihamiltonian systems, J. Funct. Anal. 99 (1991), 150-178.
- G. Hector, Quelques exemples de feuilletages-Espèces rares, Ann. Inst. Fourier (Grenoble) 26(1) (1976), 239-264.
- G. Hector and U. Hirsch, Introduction to the Geometry of Foliations. Part B, Aspects Math. E3, Friedr. Vieweg & Sohn, Braunschweig/Wiesbaden, 1987.
- R. Sacksteder, Foliations and pseudo-groups, Amer. J. Math. 87 (1965), 79-102.
- B. Seke, Sur les structures transversalement affines des feuilletages de codimension un, Ann. Inst. Fourier (Grenoble) 30(1) (1980), 1-29.