ArticleOriginal scientific text

Title

Translation foliations of codimension one on compact affine manifolds

Authors 1

Affiliations

  1. Geometría y Topología, Facultad de Ciencias Ap. 59, Universidad de Málaga, 29080 Málaga, Spain

Abstract

Consider two foliations {calF}1 and {calF}2, of dimension one and codimension one respectively, on a compact connected affine manifold (M,). Suppose that T{calF}1T{calF}2T{calF}2; T{calF}2T{calF}1T{calF}1 and TM=T{calF}1T{calF}2. In this paper we show that either {calF}2 is given by a fibration over S1, and then {calF}1 has a great degree of freedom, or the trace of {calF}1 is given by a few number of types of curves which are completely described. Moreover we prove that {calF}2 has a transverse affine structure.

Bibliography

  1. R. Brouzet, P. Molino and F. J. Turiel, Géométrie des systèmes bihamiltoniens, Indag. Math. (N.S.) 4(3) (1993), 269-296.
  2. G. Châtelet and H. Rosenberg, Manifolds which admit {bfRn} actions, Inst. Hautes Études Sci. Publ. Math. 43 (1974), 245-260.
  3. G. Darboux, Leçons sur la Théorie générale de Surfaces, Gauthier-Villars, Paris.
  4. C. Godbillon, Feuilletages: études géométriques, Progr. Math. 98, Birkhäuser, 1991.
  5. I. M. Gelfand and I. Zakharevich, Webs, Veronese curves, and Bihamiltonian systems, J. Funct. Anal. 99 (1991), 150-178.
  6. G. Hector, Quelques exemples de feuilletages-Espèces rares, Ann. Inst. Fourier (Grenoble) 26(1) (1976), 239-264.
  7. G. Hector and U. Hirsch, Introduction to the Geometry of Foliations. Part B, Aspects Math. E3, Friedr. Vieweg & Sohn, Braunschweig/Wiesbaden, 1987.
  8. R. Sacksteder, Foliations and pseudo-groups, Amer. J. Math. 87 (1965), 79-102.
  9. B. Seke, Sur les structures transversalement affines des feuilletages de codimension un, Ann. Inst. Fourier (Grenoble) 30(1) (1980), 1-29.
Pages:
171-182
Main language of publication
English
Published
1997
Exact and natural sciences