ArticleOriginal scientific text

Title

Direct image of the de Rham system associated with a rational double point

Authors 1

Affiliations

  1. Department of Information Engineering, Faculty of Engineering, Niigata University, 8050 Ikarashi Niigata 950-21, Japan

Bibliography

  1. B E. Brieskorn, Über die Auflösung gewisser Singularitäten von holomorphen Abbildungen, Math. Ann. 166 (1966), 76-102.
  2. D M. G. M. van Doorn and A. R. P. van den Essen, {calDn}-Modules with support on a curve, Publ. Res. Inst. Math. Sci. 23 (1987), 937-953.
  3. H R. Hotta, Introduction to D-Modules, Institute of Math. Sciences, Madras, India, 1987.
  4. M. Kashiwara, On the maximally overdetermined system of linear differential equations I, Publ. Res. Inst. Math. Sci. 19 (1975), 563-579.
  5. M. Kashiwara, B-functions and holonomic systems, Invent. Math. 38 (1976), 33-53.
  6. M. Kashiwara, On the holonomic systems of linear differential equations II, Invent. Math. 49 (1978), 121-136.
  7. M. Kashiwara, The Riemann-Hilbert problem for holonomic systems, Publ. Res. Inst. Math. Sci. 17 (1984), 319-365.
  8. M Z. Mebkhout, Local cohomology of analytic spaces, Publ. Res. Inst. Math. Sci. 12 Suppl. (1977), 247-256.
  9. P F. Pham, Singularités des Systèmes Différentiels de Gauss-Manin, Progr. Math. 2 (1979).
  10. S. Tajima and M. Uchida, Integration of the de Rham system associated with the resolution of a singularity (in Japanese), Sûrikaisekikenkyûsho Kôkyûroku 693 (1989), 41-68.
  11. S. Tajima and M. Uchida, Integral formula for the resolution of a plane curve singularity, Funkcial. Ekvac. 37 (1994), 229-239.
  12. N. Takayama, An algorithm of constructing the integral of a module - an infinite dimensional analog of Grobner basis, in: Procedings of International Symposium on Symbolic and Algebraic Computation (eds. S. Watanabe and M. Nagata), ACM Press, New York, 1990, 206-211.
Pages:
155-160
Main language of publication
English
Published
1997
Exact and natural sciences