ArticleOriginal scientific text

Title

A note on singularities at infinity of complex polynomials

Authors 1

Affiliations

  1. Departement de Mathématiques, Université d'Angers 2, bd. Lavoisier, 49045 Angers Cedex 01, France

Abstract

Let f be a complex polynomial. We relate the behaviour of f "at infinity" to the sheaf of vanishing cycles of the family f¯ of projective closures of fibres of f. We show that the absence of such cycles: (i) is equivalent to a condition on the asymptotic behaviour of gradient of f known as Malgrange's Condition, (ii) implies the C-triviality of f. If the support of sheaf of vanishing cycles of f¯ is a finite set, then it detects precisely the change of the topology of the fibres of f. Moreover, in this case, the generic fibre of f has the homotopy type of a bouquet of spheres.

Bibliography

  1. [BMM] J. Briançon, Ph. Maisonobe, M. Merle, Localization de systèmes différentiels, stratifications de Whitney et condition de Thom, Invent. Math. 117 (1994), 531-550.
  2. [Br] J. L. Brylinski, (Co)-Homologie d'intersection et faisceaux pervers, Seminaire Bourbaki 585 (1981-82), Astérisque 92-93 (1982), 129-157.
  3. [BDK] J. L. Brylinski, A. Dubson, M. Kashiwara, Formule de l'indice pour les modules holonomes et obstruction d'Euler locale, C. R. Acad. Sci. Paris Sér. I Math. 293 (1981), 129-132.
  4. [Di] A. Dimca, Singularities and Topology of Hypersurfaces, Universitex, Springer, New York, Berlin, Heidelberg, 1992.
  5. [Hà] H. V. Hà, Nombres de Łojasiewicz et singularités à l'infini des polynômes de deux variables complexes, C. R. Acad. Sci. Paris Sér. I Math. 311 (1990), 429-432.
  6. [Hà-Lê] H. V. Hà, D. T. Lê, Sur la topologie des polynômes complexes, Acta Math. Vietnam. 9 (1984), 21-32.
  7. [Hm-Lê] H. Hamm, D. T. Lê, Un théorème de Zariski du type de Lefschetz, Ann. Sci. École Norm. Sup. (4) 6 (1973), 317-355.
  8. [HMS] J. P. Henry, M. Merle, C. Sabbah, Sur la condition de Thom stricte pour un morphisme analytique complexe, Ann. Sci. École Norm. Sup. (4) 17 (1984), 227-268.
  9. [Ł] S. Łojasiewicz, Ensembles semi-analytiques, preprint, IHES, 1965.
  10. [LM] D. T. Lê, Z. Mebkhout, Variétés caractéristiques et variétés polaires, C. R. Acad. Sci. Paris Sér. I Math. 296 (1983), 129-132.
  11. [MM] Ph. Maisonobe, M. Merle, in preparation.
  12. [Pa] A. Parusiński, On the bifurcation set of a complex polynomial with isolated singularities at infinity, Compositio Math. 97 (1995), 369-384.
  13. [Ph] F. Pham, La descente des cols par les onglets de Lefschetz, avec vues sur Gauss- Manin, Astérisque 130 (1985), 11-47.
  14. [Sa] C. Sabbah, Quelques Remarques sur la Géométrie des Espaces Conormaux, Astérisque 130 (1985), 161-192.
  15. [S-T] D. Siersma, M. Tibăr, Singularities at infinity and their vanishing cycles, Duke Math. J. 80 (1995), 771-783.
  16. [Z] A. Zaharia, On the bifurcation set of a polynomial function and Newton boundary, II, Université de Bordeaux, preprint (1995).
Pages:
131-141
Main language of publication
English
Published
1997
Exact and natural sciences