ArticleOriginal scientific text

Title

Power-bounded elements and radical Banach algebras

Authors 1

Affiliations

  1. Department of Pure Mathematics and Mathematical Statistics, University of Cambridge, 16 Mill Lane, Cambridge, CB2 1SB, England

Abstract

Firstly, we give extensions of results of Gelfand, Esterle and Katznelson--Tzafriri on power-bounded operators. Secondly, some results and questions relating to power-bounded elements in the unitization of a commutative radical Banach algebra are discussed.

Bibliography

  1. G. R. Allan, A. G. O'Farrell and T. J. Ransford, A tauberian theorem arising in operator theory, Bull. London Math. Soc. 19 (1987), 537-545.
  2. G. R. Allan and T. J. Ransford, Power-dominated elements in a Banach algebra, Studia Math. 94 (1989), 63-79.
  3. R. P. Boas, Entire Functions, Academic Press, New York, 1954.
  4. J. Esterle, Quasimultipliers, representations of H, and the closed ideal problem for commutative Banach algebras, in: Radical Banach Algebras and Automatic Continuity, Proc. Conf. Long Beach 1981, J. Bachar et al. (eds.), Lecture Notes in Math. 975, Springer, Berlin, 1983, 66-162.
  5. I. Gelfand, Zur Theorie der Charaktere der abelschen topologischen Gruppen, Rec. Math. N.S. (Mat. Sb.) 9 (51) (1941), 49-50.
  6. P. R. Halmos, A Hilbert Space Problem Book, Van Nostrand, Princeton 1967.
  7. E. Hille and R. S. Phillips, Functional Analysis and Semi-groups, Amer. Math. Soc. Colloq. Publ. 31, Providence, R.I., 1957.
  8. Y. Katznelson and L. Tzafriri, On power-bounded operators, J. Funct. Anal. 68 (1986), 313-328.
  9. T. Pytlik, Analytic semigroups in Banach algebras, Colloq. Math. 51 (1987), 287-294.
Pages:
9-16
Main language of publication
English
Published
1997
Exact and natural sciences