ArticleOriginal scientific text
Title
Power-bounded elements and radical Banach algebras
Authors 1
Affiliations
- Department of Pure Mathematics and Mathematical Statistics, University of Cambridge, 16 Mill Lane, Cambridge, CB2 1SB, England
Abstract
Firstly, we give extensions of results of Gelfand, Esterle and Katznelson--Tzafriri on power-bounded operators. Secondly, some results and questions relating to power-bounded elements in the unitization of a commutative radical Banach algebra are discussed.
Bibliography
- G. R. Allan, A. G. O'Farrell and T. J. Ransford, A tauberian theorem arising in operator theory, Bull. London Math. Soc. 19 (1987), 537-545.
- G. R. Allan and T. J. Ransford, Power-dominated elements in a Banach algebra, Studia Math. 94 (1989), 63-79.
- R. P. Boas, Entire Functions, Academic Press, New York, 1954.
- J. Esterle, Quasimultipliers, representations of
, and the closed ideal problem for commutative Banach algebras, in: Radical Banach Algebras and Automatic Continuity, Proc. Conf. Long Beach 1981, J. Bachar et al. (eds.), Lecture Notes in Math. 975, Springer, Berlin, 1983, 66-162. - I. Gelfand, Zur Theorie der Charaktere der abelschen topologischen Gruppen, Rec. Math. N.S. (Mat. Sb.) 9 (51) (1941), 49-50.
- P. R. Halmos, A Hilbert Space Problem Book, Van Nostrand, Princeton 1967.
- E. Hille and R. S. Phillips, Functional Analysis and Semi-groups, Amer. Math. Soc. Colloq. Publ. 31, Providence, R.I., 1957.
- Y. Katznelson and L. Tzafriri, On power-bounded operators, J. Funct. Anal. 68 (1986), 313-328.
- T. Pytlik, Analytic semigroups in Banach algebras, Colloq. Math. 51 (1987), 287-294.