Download PDF - Complementary triangular forms
ArticleOriginal scientific text
Title
Complementary triangular forms
Authors 1
Affiliations
- Center for Mathematics and Informatics, P.O. Box 94079, NL-1090 GB, The Netherlands
Abstract
The notion of simultaneous reduction of pairs of matrices and linear operators to triangular forms is introduced and a survey of known material on the subject is given. Further, some open problems are pointed out throughout the text. The paper is meant to be accessible to the non-specialist and does not contain any new results or proofs.
Bibliography
- N. Aronszajn and K. T. Smith, Invariant subspaces of completely continuous operators, Ann. of Math. 60 (1954), 345-350.
- H. Bart, Transfer functions and operator theory, Linear Algebra Appl. 84 (1986), 33-61.
- H. Bart, I. Gohberg and M. A. Kaashoek, Minimal Factorization of Matrix and Operator Functions, Oper. Theory: Adv. Appl. 1, Birkhäuser, Basel, 1979.
- H. Bart and H. Hoogland, Complementary triangular forms of pairs of matrices, realizations with prescribed main matrices, and complete factorization of rational matrix functions, Linear Algebra Appl. 103 (1988), 193-228.
- H. Bart and L. G. Kroon, Companion based matrix functions: description and minimal factorization, Linear Algebra Appl. 248 (1996), 1-46.
- H. Bart and L. G. Kroon, Factorization and job scheduling: a connection via companion based rational matrix functions, ibid., to appear.
- H. Bart and L. G. Kroon, Variants of the two machine flow shop problem, European J. Oper. Res., to appear.
- H. Bart and G. Ph. A. Thijsse, Complementary triangular forms of upper triangular Toeplitz matrices, in: Oper. Theory: Adv. Appl. 40, Birkhäuser, 1989, 133-149.
- H. Bart and G. Ph. A. Thijsse, Complementary triangular forms of nonderogatory, Jordan and rank one matrices, Report 9003/B, Econometric Institute, Erasmus University Rotterdam, 1990.
- H. Bart and G. Ph. A. Thijsse, Eigenspace and Jordan-chain techniques for the description of complementary triangular forms, Report 9353/B, Econometric Institute, Erasmus University Rotterdam, 1993.
- H. Bart and H. K. Wimmer, Simultaneous reduction to triangular and companion forms of pairs of matrices: the case rank(I-AZ) = 1, Linear Algebra Appl. 150 (1991), 443-461.
- H. Bart and R. A. Zuidwijk, Triangular forms after extensions with zeroes, submitted.
- M. P. Drazin, J. W. Dungey and K. W. Gruenberg, Some theorems on commutative matrices, J. London Math. Soc. 26 (1951), 221-228.
- P. Enflo, A counterexample to the approximation property in Banach spaces, Acta Math. 130 (1973), 309-317.
- S. Friedland, Pairs of matrices which do not admit a complementary triangular form, Linear Algebra Appl. 150 (1990), 119-123.
- G. Frobenius, Über vertauschbare Matrizen, Sitz.-Ber. Akad. Wiss. Berlin 26 (1896), 601-614.
- F. J. Gaines and R. C. Thompson, Sets of nearly triangular matrices, Duke Math. J. 35 (1968), 441-453.
- I. Gohberg and M. G. Krein, Theory and Applications of Volterra Operators in Hilbert Space, Transl. Math. Monographs 24, A.M.S, Providence, R.I., 1969.
- T. J. Laffey, Simultaneous triangularization of a pair of matrices, J. Algebra 44 (1977), 550-557.
- T. J. Laffey, Simultaneous triangularization of matrices--low rank cases and the nonderogatory case, Linear and Multilinear Algebra 6 (1978), 269-305.
- T. J. Laffey, Simultaneous reduction of sets of matrices under similarity, Linear Algebra Appl. 84 (1986), 123-138.
- C. Laurie, E. Nordgren, H. Radjavi and P. Rosenthal, On triangularization of algebras of operators, J. Reine Angew. Math. 327 (1981), 143-155.
- P. Lancaster and M. Tismenetsky, The Theory of Matrices, Second Edition with Applications, Academic Press, Orlando, Fla., 1985.
- N. H. McCoy, On the characteristic roots of matric polynomials, Bull. Amer. Math. Soc. 42 (1936), 592-600.
- G. J. Murphy, Triangularizable algebras of compact operators, Proc. Amer. Math. Soc. 84 (1982), 354-356.
- H. Radjavi, A trace condition equivalent to simultaneous triangularizability, Canad. J. Math. 38 (1986), 376-386.
- J. R. Ringrose, Non-Self-Adjoint Compact Linear Operators, van Nostrand, New York, 1971.
- S. H. Tan and J. Vandewalle, On factorizations of rational matrices, IEEE Trans. Circuits and Systems 35 (1988), 1179-1181.
- R. A. Zuidwijk, Complementary triangular forms for pairs of matrices and operators, doctoral thesis, 1994.
- R. A. Zuidwijk, Quasicomplete factorizations for rational matrix functions, Integral Equations Operator Theory, to appear.
- R. A. Zuidwijk, H. Bart and L. Kroon, Quasicomplete factorization and the two machine flow shop problem, Report 9632/B, Econometric Institute, Erasmus University Rotterdam, 1996.