ArticleOriginal scientific text

Title

Complementary triangular forms

Authors 1

Affiliations

  1. Center for Mathematics and Informatics, P.O. Box 94079, NL-1090 GB, The Netherlands

Abstract

The notion of simultaneous reduction of pairs of matrices and linear operators to triangular forms is introduced and a survey of known material on the subject is given. Further, some open problems are pointed out throughout the text. The paper is meant to be accessible to the non-specialist and does not contain any new results or proofs.

Bibliography

  1. N. Aronszajn and K. T. Smith, Invariant subspaces of completely continuous operators, Ann. of Math. 60 (1954), 345-350.
  2. H. Bart, Transfer functions and operator theory, Linear Algebra Appl. 84 (1986), 33-61.
  3. H. Bart, I. Gohberg and M. A. Kaashoek, Minimal Factorization of Matrix and Operator Functions, Oper. Theory: Adv. Appl. 1, Birkhäuser, Basel, 1979.
  4. H. Bart and H. Hoogland, Complementary triangular forms of pairs of matrices, realizations with prescribed main matrices, and complete factorization of rational matrix functions, Linear Algebra Appl. 103 (1988), 193-228.
  5. H. Bart and L. G. Kroon, Companion based matrix functions: description and minimal factorization, Linear Algebra Appl. 248 (1996), 1-46.
  6. H. Bart and L. G. Kroon, Factorization and job scheduling: a connection via companion based rational matrix functions, ibid., to appear.
  7. H. Bart and L. G. Kroon, Variants of the two machine flow shop problem, European J. Oper. Res., to appear.
  8. H. Bart and G. Ph. A. Thijsse, Complementary triangular forms of upper triangular Toeplitz matrices, in: Oper. Theory: Adv. Appl. 40, Birkhäuser, 1989, 133-149.
  9. H. Bart and G. Ph. A. Thijsse, Complementary triangular forms of nonderogatory, Jordan and rank one matrices, Report 9003/B, Econometric Institute, Erasmus University Rotterdam, 1990.
  10. H. Bart and G. Ph. A. Thijsse, Eigenspace and Jordan-chain techniques for the description of complementary triangular forms, Report 9353/B, Econometric Institute, Erasmus University Rotterdam, 1993.
  11. H. Bart and H. K. Wimmer, Simultaneous reduction to triangular and companion forms of pairs of matrices: the case rank(I-AZ) = 1, Linear Algebra Appl. 150 (1991), 443-461.
  12. H. Bart and R. A. Zuidwijk, Triangular forms after extensions with zeroes, submitted.
  13. M. P. Drazin, J. W. Dungey and K. W. Gruenberg, Some theorems on commutative matrices, J. London Math. Soc. 26 (1951), 221-228.
  14. P. Enflo, A counterexample to the approximation property in Banach spaces, Acta Math. 130 (1973), 309-317.
  15. S. Friedland, Pairs of matrices which do not admit a complementary triangular form, Linear Algebra Appl. 150 (1990), 119-123.
  16. G. Frobenius, Über vertauschbare Matrizen, Sitz.-Ber. Akad. Wiss. Berlin 26 (1896), 601-614.
  17. F. J. Gaines and R. C. Thompson, Sets of nearly triangular matrices, Duke Math. J. 35 (1968), 441-453.
  18. I. Gohberg and M. G. Krein, Theory and Applications of Volterra Operators in Hilbert Space, Transl. Math. Monographs 24, A.M.S, Providence, R.I., 1969.
  19. T. J. Laffey, Simultaneous triangularization of a pair of matrices, J. Algebra 44 (1977), 550-557.
  20. T. J. Laffey, Simultaneous triangularization of matrices--low rank cases and the nonderogatory case, Linear and Multilinear Algebra 6 (1978), 269-305.
  21. T. J. Laffey, Simultaneous reduction of sets of matrices under similarity, Linear Algebra Appl. 84 (1986), 123-138.
  22. C. Laurie, E. Nordgren, H. Radjavi and P. Rosenthal, On triangularization of algebras of operators, J. Reine Angew. Math. 327 (1981), 143-155.
  23. P. Lancaster and M. Tismenetsky, The Theory of Matrices, Second Edition with Applications, Academic Press, Orlando, Fla., 1985.
  24. N. H. McCoy, On the characteristic roots of matric polynomials, Bull. Amer. Math. Soc. 42 (1936), 592-600.
  25. G. J. Murphy, Triangularizable algebras of compact operators, Proc. Amer. Math. Soc. 84 (1982), 354-356.
  26. H. Radjavi, A trace condition equivalent to simultaneous triangularizability, Canad. J. Math. 38 (1986), 376-386.
  27. J. R. Ringrose, Non-Self-Adjoint Compact Linear Operators, van Nostrand, New York, 1971.
  28. S. H. Tan and J. Vandewalle, On factorizations of rational matrices, IEEE Trans. Circuits and Systems 35 (1988), 1179-1181.
  29. R. A. Zuidwijk, Complementary triangular forms for pairs of matrices and operators, doctoral thesis, 1994.
  30. R. A. Zuidwijk, Quasicomplete factorizations for rational matrix functions, Integral Equations Operator Theory, to appear.
  31. R. A. Zuidwijk, H. Bart and L. Kroon, Quasicomplete factorization and the two machine flow shop problem, Report 9632/B, Econometric Institute, Erasmus University Rotterdam, 1996.
Pages:
443-452
Main language of publication
English
Published
1997
Exact and natural sciences