Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
1997 | 38 | 1 | 427-441

Tytuł artykułu

The Gerschgorin discs under unitary similarity

Treść / Zawartość

Języki publikacji

EN

Abstrakty

EN
The intersection of the Gerschgorin regions over the unitary similarity orbit of a given matrix is studied. It reduces to the spectrum in some cases: for instance, if the matrix satisfies a quadratic equation, and also for matrices having "large" singular values or diagonal entries. This leads to a number of open questions.

Rocznik

Tom

38

Numer

1

Strony

427-441

Daty

wydano
1997

Twórcy

  • Institute of Mathematics, Polish Academy of Sciences, P.O. Box 137, 00-950 Warszawa, Poland
  • Institute of Mathematics, Polish Academy of Sciences, P.O. Box 137, 00-950 Warszawa, Poland

Bibliografia

  • G. R. Allan and J. Zemánek [to appear], Invariant subspaces for pairs of projections, J. London Math. Soc.
  • H. Auerbach [1933], Sur le nombre de générateurs d'un groupe linéaire borné, C. R. Acad. Sci. Paris 197, 1385-1386.
  • B. Aupetit [1991], A Primer on Spectral Theory, Springer, New York.
  • B. Aupetit, E. Makai, Jr. and J. Zemánek [1996], Strict convexity of the singular value sequences, Acta Sci. Math. (Szeged) 62, 517-521.
  • F. L. Bauer and C. T. Fike [1960], Norms and exclusion theorems, Numer. Math. 2, 137-141.
  • H. E. Bell [1965], Gershgorin's theorem and the zeros of polynomials, Amer. Math. Monthly 72, 292-295.
  • E. Bodewig [1956], Matrix Calculus, North-Holland, Amsterdam.
  • E. T. Browne [1928], The characteristic equation of a matrix, Bull. Amer. Math. Soc. 34, 363-368.
  • E. T. Browne [1939], Limits to the characteristic roots of a matrix, Amer. Math. Monthly 46, 252-265.
  • E. T. Browne [1958], Introduction to the Theory of Determinants and Matrices, University of North Carolina Press, Chapel Hill, NC.
  • R. A. Brualdi and S. Mellendorf [1994], Regions in the complex plane containing the eigenvalues of a matrix, Amer. Math. Monthly 101, 975-985.
  • R. L. Causey [1958], Computing eigenvalues of non-Hermitian matrices by methods of Jacobi type, J. Soc. Indust. Appl. Math. 6, 172-181.
  • G. Dahlquist [1958], Stability and Error Bounds in the Numerical Integration of Ordinary Differential Equations, dissertation, Uppsala. Published in Kungl. Tekn. Högsk. Hand. Stockholm, No. 130, 1959.
  • C. Davis [1955], Generators of the ring of bounded operators, Proc.Amer.Math.Soc.6, 970-972.
  • J.Dazord [1991], Sur une norme de matrices, C.R.Acad.Sci.ParisSér. I Math. 312, 597-600.
  • J. Dazord [1994], On the C-numerical range of a matrix, Linear Algebra Appl. 212/213, 21-29.
  • J. Dazord [1995a], Une propriété extremale de la diagonale d'une matrice, lecture notes, Luminy.
  • J. Dazord [1995b], Matrices (1-d), lecture notes, Luminy.
  • J. Dazord [1996], Trace norm and spatial radius of a matrix, lecture notes, Chemnitz.
  • R. Gabriel [1979], Matrizen mit maximaler Diagonale bei unitärer Similarität, J. Reine Angew. Math. 307/308, 31-52.
  • N. Gastinel [1960], Utilisation de matrices vérifiant une équation de degré 2 pour la transmutation de matrices, C. R. Acad. Sci. Paris 250, 1960-1961.
  • S. Gerschgorin [1931], Über die Abgrenzung der Eigenwerte einer Matrix, Izv. Akad. Nauk SSSR 7, 749-754.
  • Y. Gu [1994], The distribution of eigenvalues of a matrix, Acta Math. Appl. Sinica 17, 501-511 (in Chinese).
  • K. E. Gustafson and D. K. M. Rao [1997], Numerical Range, Springer, New York.
  • P. R. Halmos [1995], Linear Algebra Problem Book, Mathematical Association of America, Washington, DC.
  • T. Hawkins [1975], Cauchy and the spectral theory of matrices, Historia Math. 2, 1-29.
  • R. A. Horn and C. R. Johnson [1985], Matrix Analysis, Cambridge University Press, Cambridge.
  • R. A. Horn and C. R. Johnson [1991], Topics in Matrix Analysis, Cambridge University Press, Cambridge.
  • A. S. Householder [1964], The Theory of Matrices in Numerical Analysis, Blaisdell, New York.
  • T. J. Laffey [1981], Algebras generated by two idempotents, Linear Algebra Appl. 37, 45-53.
  • P. Lascaux et R. Théodor [1993], Analyse Numérique Matricielle Appliquée à l'Art de l'Ingénieur 1, Masson, Paris.
  • L. László [1991], Upper bounds for matrix diagonals, Linear and Multilinear Algebra 30, 283-301.
  • L. László [1996], Upper bounds for the best normal approximation, lecture notes, Chemnitz.
  • L. László [1997], Upper bounds for the best normal approximation, preprint.
  • S. L. Lee [1996], Best available bounds for departure from normality, SIAM J. Matrix Anal. Appl. 17, 984-991.
  • S. M. Lozinskiĭ [1958], Error estimate for numerical integration of ordinary differential equations I, Izv. Vyssh. Uchebn. Zaved. Mat., no. 5 (6), 52-90; errata, 1959, no. 5 (12), 222 (in Russian).
  • E. H. Luchnis and M. A. McLoughlin [1996], In memoriam: Olga Taussky-Todd, Notices Amer. Math. Soc. 43, 838-847.
  • G. Lumer [1961], Semi-inner-product spaces, Trans. Amer. Math. Soc. 100, 29-43.
  • C. C. MacDuffee [1946], The Theory of Matrices, Chelsea, New York.
  • M. Marcus and H. Minc [1964], A Survey of Matrix Theory and Matrix Inequalities, Allyn and Bacon, Boston.
  • M. Marcus and M. Sandy [1985], Singular values and numerical radii, Linear and Multilinear Algebra 18, 337-353.
  • M. Marden [1966], Geometry of Polynomials, American Mathematical Society, Providence, RI.
  • L. Mirsky [1955], An Introduction to Linear Algebra, Clarendon Press, Oxford.
  • M. Newman [1980]. Geršgorin revisited, Linear Algebra Appl. 30, 247-249.
  • N. Nirschl and H. Schneider [1964], The Bauer fields of values of a matrix, Numer. Math. 6, 355-365.
  • N. Obreškov [1963], Zeros of Polynomials, Izdat. Bŭlgar. Akad. Nauk, Sofia (in Bulgarian).
  • W. V. Parker [1948], Sets of complex numbers associated with a matrix, Duke Math. J. 15, 711-715.
  • W. V. Parker [1951], Characteristic roots and field of values of a matrix, Bull. Amer. Math. Soc. 57, 103-108.
  • M. Parodi [1959], La Localisation des Valeurs Caractéristiques des Matrices et Ses Applications, Gauthier-Villars, Paris.
  • S. Prasanna [1981], The norm of a derivation and the Björck-Thomee-Istratescu theorem, Math. Japon. 26, 585-588.
  • V. V. Prasolov [1994], Problems and Theorems in Linear Algebra, American Mathematical Society, Providence, RI.
  • V. Pták et J. Zemánek [1976], Continuité lipschitzienne du spectre comme fonction d'un opérateur normal, Comment. Math. Univ. Carolin. 17, 507-512.
  • H. Radjavi and P. Rosenthal [1970], Matrices for operators and generators of B(H), J. London Math. Soc. (2) 2, 557-560.
  • A. G. Robertson [1974], A note on the unit ball in C*-algebras, Bull. London Math. Soc. 6, 333-335.
  • V. Scharnitzky [1996], Matrix Calculus, Műszaki Könyvkiadó, Budapest (in Hungarian).
  • I. Schur [1909], Über die charakteristischen Wurzeln einer linearen Substitution mit einer Anwendung auf die Theorie der Integralgleichungen, Math. Ann. 66, 488-510.
  • H. Shapiro [1991], A survey of canonical forms and invariants for unitary similarity, Linear Algebra Appl. 147, 101-167.
  • K. Skurzyński [1996], Elements of the theory of matrices, Gradient, no. 4, 216-234 (in Polish).
  • A. Smoktunowicz [1996], Remarks on inclusion theorems for normal matrices, lecture notes, Warszawa.
  • J. G. Stampfli and J. P. Williams [1968], Growth conditions and the numerical range in a Banach algebra, Tôhoku Math. J. 20, 417-424.
  • P. Stein [1952], A note on bounds of multiple characteristic roots of a matrix, J. Research Nat. Bur. Standards 48, 59-60.
  • E. L. Stolov [1979], The Hausdorff set of a matrix, Izv. Vyssh. Uchebn. Zaved. Mat., no. 10, 98-100 (in Russian).
  • B.-S. Tam [1986], A simple proof of the Goldberg-Straus theorem on numerical radii, Glasgow Math. J. 28, 139-141.
  • O. Taussky [1948], Bounds for characteristic roots of matrices, Duke Math. J. 15, 1043-1044.
  • O. Taussky [1949], A recurring theorem on determinants, Amer. Math. Monthly 56, 672-676.
  • O. Taussky [1962], Eigenvalues of finite matrices: Some topics concerning bounds for eigenvalues of finite matrices, in: Survey of Numerical Analysis (ed. J. Todd), McGraw-Hill, New York, 279-297.
  • R. C. Thompson [1987], The matrix numerical range, Linear and Multilinear Algebra 21, 321-323.
  • N.-K. Tsing [1983], Diameter and minimal width of the numerical range, Linear and Multilinear Algebra 14, 179-185.
  • H. W. Turnbull and A. C. Aitken [1932], An Introduction to the Theory of Canonical Matrices, Blackie, London.
  • R. S. Varga [1962], Matrix Iterative Analysis, Prentice-Hall, Englewood Cliffs, NJ.
  • R. S. Varga [1965], Minimal Gerschgorin sets, Pacific J. Math. 15, 719-729.
  • T. Yoshino [1993], Introduction to Operator Theory, Longman, Harlow.
  • A. Zalewska-Mitura [1997], Localization of the Spectrum of Matrices by Means of Unitary Similarities, dissertation, Institute of Mathematics of the Polish Academy of Sciences, Warszawa (in Polish).

Identyfikator YADDA

bwmeta1.element.bwnjournal-article-bcpv38i1p427bwm