ArticleOriginal scientific text

Title

Almost periodic and strongly stable semigroups of operators

Authors 1

Affiliations

  1. Department of Mathematics, Ohio University, Athens, Ohio 45701, U.S.A.

Abstract

This paper is chiefly a survey of results obtained in recent years on the asymptotic behaviour of semigroups of bounded linear operators on a Banach space. From our general point of view, discrete families of operators {Tn:n=0,1,...} on a Banach space X (discrete one-parameter semigroups), one-parameter C0-semigroups {T(t):t0} on X (strongly continuous one-parameter semigroups), are particular cases of representations of topological abelian semigroups. Namely, given a topological abelian semigroup S, a family of bounded linear operators {T(s): s ∈ S} is called a representation of S in B(X) if: (i) T(s+t) = T(s)T(t); (ii) For every x ∈ X, s ↦ T(s)x is a continuous mapping from S to X. The central result which will be discussed in this article is a spectral criterion for almost periodicity of semigroups, obtained by Lyubich and the author [40] for uniformly continuous representations of arbitrary topological abelian semigroups (thus including the case of single bounded operators and several commuting bounded operators), and for C0-semigroups [41], and by Batty and the author [9] for arbitrary strongly continuous representations of suitable locally compact abelian semigroups. An immediate consequence of this result is a Stability Theorem, obtained, for single operators and C0-semigroups, also by Arendt and Batty [1] independently. The proof in [1] uses a Tauberian theorem for the Laplace-Stieltjes transforms and transfinite induction. Methods of this type can also be used to prove the almost periodicity result for C0-semigroups [8], but seem not suitable for commuting semigroups, and will not be discussed in this article. We also refer the reader to a recent survey article of Batty [6], where some developments are described which are not included here.

Bibliography

  1. W. Arendt and C. J. K. Batty, Tauberian theorems and stability of one-parameter semigroups, Trans. Amer. Math. Soc. 306 (1988), 837-852.
  2. R. Arens, Inverse-producing extensions of normed algebras, Trans. Amer. Math. Soc. 88 (1958) 536-548.
  3. W. B. Arveson, On groups of automorphisms of operator algebras, J. Funct. Anal. 15 (1974), 217-243.
  4. J. B. Baillon and P. Clément, Examples of unbounded imaginary powers of operators, ibid. 100 (1991), 419-434.
  5. W. Bartoszek, Asymptotic periodicity of the iterates of positive contractions on Banach lattices, Studia Math. 91 (1988), 179-188.
  6. C. J. K. Batty, Asymptotic behaviour of semigroups of operators in: Functional Analysis and Operator Theory, Banach Center Publ. 30, Inst. Math., Polish Acad. Sci., Warszawa, 1994, 35-52.
  7. C. J. K. Batty, Z. Brzeźniak and D. Greenfield, A quantitative asymptotic theorem for contraction semigroups with countable unitary spectrum, Studia Math. 121 (1996), 167-183.
  8. C. J. K. Batty and Vũ Quôc Phóng, Stability of individual elements under one-parameter semigroups, Trans. Amer. Math. Soc. 322 (1990), 805-818.
  9. C. J. K. Batty and Vũ Quôc Phóng, Stability of strongly continuous representations of abelian semigroups, Math. Z. 209 (1992), 75-88.
  10. B. Beauzamy, Introduction to Operator Theory and Invariant Subspaces, North- Hollland, Amsterdam, 1988.
  11. P. R. Chernoff, Two counterexamples in semigroup theory on Hilbert space, Proc. Amer. Math. Soc. 56 (1976), 253-255.
  12. I. Colojoarǎ and C. Foiaş, Theory of Generalized Spectral Operators, Gordon & Breach, New York, 1968.
  13. R. deLaubenfels, Existence Families, Functional Calculi and Evolution Equations, Lecture Notes in Math. 1570, Springer, Berlin, 1994.
  14. R. deLaubenfels and Vũ Quôc Phóng, Stability and almost periodicity of solutions of ill-posed abstract Cauchy problems, Proc. Amer. Math. Soc., to appear.
  15. R. deLaubenfels and Vũ Quôc Phóng, The discrete Hille-Yosida space, stability of individual orbits, and invariant subspaces, preprint.
  16. R. G. Douglas, On extending commutative semigroups of isometries, Bull. London Math. Soc. 1 (1969), 157-159.
  17. I. Erdelyi and S. W. Wang, A Local Spectral Theory for Closed Operators, London Math. Soc. Lecture Note Ser., Cambridge Univ. Press, Cambridge, 1985.
  18. J. Esterle, E. Strouse et F. Zouakia, Stabilité asymptotique de certains semigroupes d'opérateurs, J. Operator Theory 28 (1992), 203-227.
  19. S. R. Foguel, A counterexample to a problem of Sz.-Nagy, Proc. Amer. Math. Soc. 15 (1964), 788-790.
  20. I. Gelfand, Zur Theorie der Charaktere der abelschen topologischen Gruppen, Mat. Sb. 9 (51) (1941), 49-50.
  21. P. R. Halmos, On Foguel's answer to Nagy's question, Proc. Amer. Math. Soc. 15 (1964), 791-793.
  22. P. R. Halmos, A Hilbert Space Problem Book, Springer, Berlin, 1982.
  23. E. Hille and R. S. Phillips, Functional Analysis and Semi-Groups, Amer. Math. Soc., Providence, R.I., 1957.
  24. Y. Katznelson and L. Tzafriri, On power bounded operators, J. Funct. Anal. 68 (1986), 313-328.
  25. L. Kérchy, Unitary asymptotes of Hilbert space operators, in: Functional Analysis and Operator Theory, Banach Center Publ. 30, Inst. Math., Polish Acad. Sci., Warszawa, 1994, 191-201.
  26. U. Krengel, Ergodic Theorems, de Gruyter, Berlin, 1985.
  27. A. Lasota, T. Y. Li and J. A. Yorke, Asymptotic periodicity of the iterates of Markov operators, Trans. Amer. Math. Soc. 286 (1984), 751-764.
  28. Yu. I. Lyubich, On the spectrum of a representation of an abelian topological group, Dokl. Akad. Nauk SSSR 12 (1971), 1482-1486 (in Russian).
  29. Yu. I. Lyubich, V. I. Matsaev and G. M. Fel'dman, Representations with separable spectrum, Funct. Anal. Appl. 7 (1973), 129-136.
  30. Yu. I. Lyubich, Introduction to the Theory of Banach Representations of Groups, Birk- häuser, Basel, 1988.
  31. Yu. I. Lyubich and Vũ Quôc Phóng, Asymptotic stability of linear differential equations in Banach spaces, Studia Math. 88 (1988), 37-42.
  32. A. McIntosh and A. Yagi, Operators of type ω without a bounded H-functional calculus, in: Miniconference on Operators in Analysis, Proc. Centre Math. Anal., ANU, Canberra (1989) 24, 159-172.
  33. M. Miklavčič, Asymptotic periodicity of the iterates of positivity preserving operators, Trans. Amer. Math. Soc. 307 (1988), 469-479.
  34. B. Sz.-Nagy and C. Foiaş, Harmonic Analysis of Operators on Hilbert Space, North-Holland, Amsterdam, 1970.
  35. B. Sz.-Nagy, Completely continuous operators with uniformly bounded iterates, Magyar Tud. Akad. Mat. Kutató Int. Közl. 4 (1959), 89-93.
  36. E. W. Packel, A semi-group analogue of Foguel's counterexample, Proc. Amer. Math. Soc. 21 (1969), 240-244.
  37. M. Putinar, Hyponormal operators are subscalar, J. Operator Theory 12 (1984), 385-395.
  38. C. R. Putnam, Hyponormal contractions and strong power convergence, Pacific J. Math. 57 (1975), 531-538.
  39. G. M. Sklyar and V. Ya. Shirman, On the asymptotic stability of linear differential equations in a Banach space, Teor. Funktsiĭ Funktsional. Anal. i Prilozhen. 37 (1982), 127-132.
  40. Vũ Quôc Phóng and Yu I. Lyubich, A spectral criterion for asymptotic almost periodicity of uniformly continuous representations of abelian semigroups, J. Soviet Math. 51 (1990), 1263-1266. Originally published in Teor. Funktsiĭ Funktsional. Anal. i Prilozhen. 50 (1988), 38-43 (in Russian).
  41. Vũ Quôc Phóng and Yu I. Lyubich, A spectral criterion for almost periodicity of one-parameter semigroups, J. Soviet Math. 48 (1990), 644-647. Originally published in Teor. Funktsiĭ Funktsional. Anal. i Prilozhen. 47 (1987), 36-41 (in Russian).
  42. Vũ Quôc Phóng, Theorems of Katznelson-Tzafriri type for semigroups of operators, J. Funct. Anal. 103 (1992), 74-84.
  43. Vũ Quôc Phóng, A short proof of the Y. Katznelson's and L. Tzafriri's theorem, Proc. Amer. Math. Soc. 115 (1992), 1023-1024.
  44. Vũ Quôc Phóng, On the spectrum, complete trajectories and asymptotic stability of linear semidynamical systems, J. Differential Equations 105 (1993), 30-45.
  45. Vũ Quôc Phóng, Asymptotic almost periodicity and compactifying representations of semigroups, Ukrain. Math. J. 38 (1986), 576-579.
  46. Vũ Quôc Phóng, Stability of C0-semigroups commuting with a compact operator, Proc. Amer. Math. Soc., to appear.
  47. Vũ Quôc Phóng and F. Y. Yao, On similarity to contraction semigroups on Hilbert space, Semigroup Forum, to appear.
  48. J. Wermer, Banach Algebras and Several Complex Variables, Springer, New York, 1976.
  49. W. Żelazko, On a certain class of non-removable ideals in Banach algebras, Studia Math. 44 (1972), 87-92.
  50. J. Zemánek, On the Gelfand-Hille theorems, in: Functional Analysis and Operator Theory, Banach Center Publ. 30, Inst. Math., Polish Acad. Sci., Warszawa, 1994, 369-385.
Pages:
401-426
Main language of publication
English
Published
1997
Exact and natural sciences