PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
1997 | 38 | 1 | 339-360
Tytuł artykułu

A survey of the Kreiss matrix theorem for power bounded families of matrices and its extensions

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We survey results related to the Kreiss Matrix Theorem, especially examining extensions of this theorem to Banach space and Hilbert space. The survey includes recent and established results together with proofs of many of the interesting facts concerning the Kreiss Matrix Theorem.
Słowa kluczowe
Rocznik
Tom
38
Numer
1
Strony
339-360
Opis fizyczny
Daty
wydano
1997
Twórcy
  • Department of Computer Sciences, University of Wisconsin-Madison, 1210 W. Dayton St., Madison, WI 53706, U.S.A.
  • Department of Mathematical Sciences, University of Wisconsin-Milwaukee, P.O. Box 413, Milwaukee, Wisconsin 53201, U.S.A.
Bibliografia
  • [1] N. K. Bari, A Treatise on Trigonometric Series, Volume II, 2nd ed., Pergamon Press (1964)
  • [2] C. A. Berger and J. G. Stampfli, Mapping theorems for the numerical range, Amer. J. Math. 89 (1967), 1047-1055
  • [3] B. Bollobás, The power inequality on Banach spaces, Proc. Cambridge Philos. Soc. 69 (1971), 411-415
  • [4] F. F. Bonsall and J. Duncan, Numerical Ranges of Operators on Normed Spaces and of Elements of Normed Algebras, Cambridge University Press (1971)
  • [5] F. F. Bonsall and J. Duncan, Numerical Ranges II, Cambridge University Press (1973)
  • [6] P. Brenner and V. Thomée, Stability and convergence rates in $L_p$ for certain difference schemes, Math. Scand. 27 (1970), 5-23
  • [7] P. Brenner and V. Thomée, On rational approximations of semigroups, SIAM J. Numer. Anal. 16 (1979), 683-694
  • [8] P. Brenner, V. Thomée, and L. B. Wahlbin, Besov Spaces and Applications to Difference Methods for Initial Value Problems, Lecture Notes in Math. 434, Springer, New York (1975)
  • [9] M. L. Buchanon, A necessary and sufficient condition for stability of difference schemes for initial value problems, SIAM J. Appl. Math. 11 (1963), 919-935
  • [10] M. J. Crabb, Numerical range estimates for the norms of iterated operators, Glasgow Math. J. 11 (1970), 85-87
  • [11] M. J. Crabb, The power inequality on normed spaces, Proc. Edinburgh Math. Soc. 17 (1971), 237-240
  • [12] A. J. Chorin, T. J. R. Hughes, M. F. McCracken, and J. E. Marsden, Product formulas and numerical algorithms, Comm. Pure Appl. Math. 31 (1978), 205-256
  • [13] M. Crouzeix, S. Larsson, S. Piskarev and V. Thomée, The stability of rational approximations of analytic semigroups, BIT 33 (1993), 74-84
  • [14] G. Dahlquist, H. Mingyou, and R. LeVeque, On the uniform power-boundedness of a family of matrices and the applications to one-leg and linear multistep methods, Numer. Math. 42 (1983), 1-13
  • [15] E. B. Davies, One-Parameter Semigroups, Academic Press (1980)
  • [16] J. L. M. van Dorsselaer, J. F. B. M. Kraaijevanger, and M. N. Spijker, Linear stability analysis in the numerical solution of initial value problems, Acta Numerica (1993), 199-237
  • [17] S. R. Foguel, A counterexample to a problem of Sz.-Nagy, Proc. Amer. Math. Soc. 15 (1964), 788-790
  • [18] S. Friedland, A generalization of the Kreiss matrix theorem, SIAM J. Math. Anal. 12 (1981), 826-832
  • [19] M. Goldberg and E. Tadmor, On the numerical radius and its applications, Linear Algebra Appl. 42 (1982), 263-284
  • [20] M. Gorelick and H. Kranzer, An extension of the Kreiss stability theorem to families of matrices of unbounded order, Linear Algebra Appl. 14 (1976), 237-256
  • [21] D. Gottlieb and S. A. Orszag, Numerical Analysis of Spectral Methods: Theory and Applications, SIAM (1977)
  • [22] P. R. Halmos, On Foguel's answer to Nagy's question, Proc. Amer. Math. Soc. 15 (1964), 791-793
  • [23] P. R. Halmos, Ten Problems in Hilbert Space, Bull. Amer. Math. Soc. 76 (1970), 887-933
  • [24] P. R. Halmos, A Hilbert Space Problem Book, 2nd ed., Springer (1982)
  • [25] G. Hedstrom, Norms of powers of absolutely convergent Fourier series, Michigan Math. J. 13 (1966), 393-416
  • [26] R. Hersh and T. Kato, High-accuracy stable difference schemes for well-posed initial-value problems, SIAM J. Numer. Anal. 16 (1979), 670-682
  • [27] T. Kato, Estimation of iterated matrices, with applications to the von Neumann condition, Numer. Math. 2 (1960), 22-29
  • [28] T. Kato, Some mapping theorems for the numerical range, Proc. Japan Acad. 41 (1965), 652-655
  • [29] J. F. B. M. Kraaijevanger, Two counterexamples related to the Kreiss matrix theorem, BIT 34 (1994), 113-119
  • [30] H.-O. Kreiss, Über die Stabilitätsdefinition für Differenzengleichungen die partielle Differentialgleichungen approximieren, Nord. Tidskr. Inf. (BIT) 2 (1962), 153-181
  • [31] H.-O. Kreiss, Über sachgemässe Cauchyprobleme, Math. Scand. 13 (1963), 109-128
  • [32] H.-O. Kreiss, On difference approximations of the dissipative type for hyperbolic differential equations, Comm. Pure Appl. Math. 17 (1964), 335-353
  • [33] E. G. Landau, Darstellung und Begründung einiger neuerer Ergebnisse der Funktionentheorie, in: Das Kontinuum, und andere Monographien, 2nd ed., Chelsea Publishing Company, 1929
  • [34] P. D. Lax and L. Nirenberg, On stability of difference schemes; a sharp form of Gå rding's inequality, Comm. Pure Appl. Math. 19 (1966), 473-492
  • [35] H. W. J. Lenferink and M. N. Spijker, A generalization of the numerical range of a matrix, Linear Algebra Appl. 140 (1990), 251-266
  • [36] H. W. J. Lenferink and M. N. Spijker, On a generalization of the resolvent condition in the Kreiss Matrix Theorem, Math. Comp. 57 (1991), 211-220
  • [37] H. W. J. Lenferink and M. N. Spijker, On the use of stability regions in the numerical analysis of initial value problems, ibid. 57 (1991), 221-237
  • [38] R. L. LeVeque and L. N. Trefethen, On the resolvent condition in the Kreiss matrix theorem, Nord. Tidskr. Inf. Beh. (BIT) 24 (1984), 584-591
  • [39] C. Lubich and O. Nevanlinna, On resolvent conditions and stability estimates, BIT 31 (1991), 293-313
  • [40] C. A. McCarthy, A strong resolvent condition does not imply power-boundedness, Chalmers Inst. of Tech. and Univ. of Göteborg, preprint # 15 (1971)
  • [41] C. A. McCarthy and J. Schwartz, On the norm of a finite boolean algebra of projections, and applications to theorems of Kreiss and Morton, Comm. Pure Appl. Math. 18 (1965), 191-201
  • [42] D. Michelson, Stability theory of difference approximations for multi-dimensional initial-boundary value problems, Math. Comp. 40 (1983), 1-45
  • [43] J. J. H. Miller, On power bounded operators and operators satisfying a resolvent condition, Numer. Math. 10 (1967), 389-396
  • [44] J. Miller and G. Strang, Matrix theorems for partial differential equations, Math. Scand. 18 (1966), 113-123
  • [45] K. W. Morton, On a matrix theorem due to H.-O. Kreiss, Comm. Pure Appl. Math. 17 (1964), 375-380
  • [46] K. W. Morton and S. Schechter, On the stability of finite difference matrices, SIAM J. Numer. Anal. Ser. B 2 (1965), 119-128
  • [47] O. Nevanlinna, Convergence of Iterations for Linear Equations, Lectures in Math., Birkhäuser, Basel (1993)
  • [48] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Appl. Math. Sci. 44, Springer (1983)
  • [49] C. Pearcy, An elementary proof of the power inequality for the numerical radius, Michigan Math. J. 13 (1966), 289-291
  • [50] A. Pokrzywa, On an infinite-dimensional version of the Kreiss matrix theorem, in: Numerical Analysis and Mathematical Modelling, Banach Center Publ. 29, Inst. Math., Polish Acad. Sci., Warszawa, 1994, 45-50
  • [51] S. C. Reddy and L. N. Trefethen, Stability of the method of lines, Numer. Math. 62 (1992), 235-267
  • [52] R. D. Richtmyer and K. W. Morton, Difference Methods for Initial Value Problems, 2nd ed., Wiley Interscience (1967)
  • [53] A. L. Shields, On Möbius bounded operators, Acta Sci. Math. (Szeged) 40 (1978), 371-374
  • [54] H. Shintani and K. Toemeda, Stability of difference schemes for nonsymmetric linear hyperbolic systems with variable coefficients, Hiroshima Math. J. 7 (1977), 309-78
  • [55] M. N. Spijker, On a conjecture by LeVeque and Trefethen, BIT 31 (1991), 551-555
  • [56] J. C. Strikwerda, Finite Difference Schemes and Partial Differential Equations, Wadsworth & Brooks/Cole, Pacific Grove, Calif. (1989)
  • [57] J. C. Strikwerda and B. A. Wade, An extension of the Kreiss matrix theorem, SIAM J. Numer. Anal. 25 (1988), 1272-1278
  • [58] J. C. Strikwerda and B. A. Wade, Cesàro means and the Kreiss matrix theorem, Linear Algebra Appl. 145 (1991), 89-106
  • [59] B. Sz.-Nagy and C. Foiaş, On certain classes of power-bounded operators in Hilbert space, Acta Sci. Math. (Szeged) 27 (1966), 17-25
  • [60] B. Sz.-Nagy and C. Foiaş, Harmonic Analysis of Operators on Hilbert Space, North-Holland (1970)
  • [61] E. Tadmor, The equivalence of $L_2$-stability, the resolvent condition, and strict H-stability, Linear Algebra Appl. 41 (1981), 151-159
  • [62] E. Tadmor, Complex symmetric matrices with strongly stable iterates, ibid. 78 (1986), 65-77
  • [63] E. Tadmor, Stability analysis of finite-difference, pseudospectral and Fourier-Galerkin approximations for time dependent problems, SIAM Rev. 29 (1987), 525-555
  • [64] V. Thomée, Stability theory for partial differential operators, ibid. 11 (1969), 152-195
  • [65] E. C. Titchmarsh, The Theory of Functions, 2nd ed., Oxford University Press (1979)
  • [66] B. A. Wade, Stability and sharp convergence estimates for symmetrizable difference operators, Ph.D. dissertation, University of Wisconsin-Madison, 1987
  • [67] B. A. Wade, Symmetrizable finite difference operators, Math. Comp. 54 (1990), 525-543
  • [68] O. B. Widlund, On the stability of parabolic difference schemes, ibid. 19 (1965), 1-13
  • [69] M. Yamaguti and T. Nogi, An algebra of pseudo difference schemes and its applications, Publ. Res. Inst. Math. Sci. Kyoto University 3 (1967), 151-66
  • [70] K. Yosida, Functional Analysis, 6th ed., Springer, New York, 1980
  • [71] J. Zemánek, On the Gelfand-Hille theorems, in: Functional Analysis and Operator Theory, Banach Center Publ. 30, Inst. Math., Polish Acad. Sci., Warszawa, 1994, 369-385
  • [72] A. Zygmund, Trigonometric Series, Volume I, 2nd ed., Cambridge University Press (1968)
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-bcpv38i1p339bwm
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.