ArticleOriginal scientific text

Title

A survey of the Kreiss matrix theorem for power bounded families of matrices and its extensions

Authors 1, 2

Affiliations

  1. Department of Computer Sciences, University of Wisconsin-Madison, 1210 W. Dayton St., Madison, WI 53706, U.S.A.
  2. Department of Mathematical Sciences, University of Wisconsin-Milwaukee, P.O. Box 413, Milwaukee, Wisconsin 53201, U.S.A.

Abstract

We survey results related to the Kreiss Matrix Theorem, especially examining extensions of this theorem to Banach space and Hilbert space. The survey includes recent and established results together with proofs of many of the interesting facts concerning the Kreiss Matrix Theorem.

Bibliography

  1. N. K. Bari, A Treatise on Trigonometric Series, Volume II, 2nd ed., Pergamon Press (1964)
  2. C. A. Berger and J. G. Stampfli, Mapping theorems for the numerical range, Amer. J. Math. 89 (1967), 1047-1055
  3. B. Bollobás, The power inequality on Banach spaces, Proc. Cambridge Philos. Soc. 69 (1971), 411-415
  4. F. F. Bonsall and J. Duncan, Numerical Ranges of Operators on Normed Spaces and of Elements of Normed Algebras, Cambridge University Press (1971)
  5. F. F. Bonsall and J. Duncan, Numerical Ranges II, Cambridge University Press (1973)
  6. P. Brenner and V. Thomée, Stability and convergence rates in Lp for certain difference schemes, Math. Scand. 27 (1970), 5-23
  7. P. Brenner and V. Thomée, On rational approximations of semigroups, SIAM J. Numer. Anal. 16 (1979), 683-694
  8. P. Brenner, V. Thomée, and L. B. Wahlbin, Besov Spaces and Applications to Difference Methods for Initial Value Problems, Lecture Notes in Math. 434, Springer, New York (1975)
  9. M. L. Buchanon, A necessary and sufficient condition for stability of difference schemes for initial value problems, SIAM J. Appl. Math. 11 (1963), 919-935
  10. M. J. Crabb, Numerical range estimates for the norms of iterated operators, Glasgow Math. J. 11 (1970), 85-87
  11. M. J. Crabb, The power inequality on normed spaces, Proc. Edinburgh Math. Soc. 17 (1971), 237-240
  12. A. J. Chorin, T. J. R. Hughes, M. F. McCracken, and J. E. Marsden, Product formulas and numerical algorithms, Comm. Pure Appl. Math. 31 (1978), 205-256
  13. M. Crouzeix, S. Larsson, S. Piskarev and V. Thomée, The stability of rational approximations of analytic semigroups, BIT 33 (1993), 74-84
  14. G. Dahlquist, H. Mingyou, and R. LeVeque, On the uniform power-boundedness of a family of matrices and the applications to one-leg and linear multistep methods, Numer. Math. 42 (1983), 1-13
  15. E. B. Davies, One-Parameter Semigroups, Academic Press (1980)
  16. J. L. M. van Dorsselaer, J. F. B. M. Kraaijevanger, and M. N. Spijker, Linear stability analysis in the numerical solution of initial value problems, Acta Numerica (1993), 199-237
  17. S. R. Foguel, A counterexample to a problem of Sz.-Nagy, Proc. Amer. Math. Soc. 15 (1964), 788-790
  18. S. Friedland, A generalization of the Kreiss matrix theorem, SIAM J. Math. Anal. 12 (1981), 826-832
  19. M. Goldberg and E. Tadmor, On the numerical radius and its applications, Linear Algebra Appl. 42 (1982), 263-284
  20. M. Gorelick and H. Kranzer, An extension of the Kreiss stability theorem to families of matrices of unbounded order, Linear Algebra Appl. 14 (1976), 237-256
  21. D. Gottlieb and S. A. Orszag, Numerical Analysis of Spectral Methods: Theory and Applications, SIAM (1977)
  22. P. R. Halmos, On Foguel's answer to Nagy's question, Proc. Amer. Math. Soc. 15 (1964), 791-793
  23. P. R. Halmos, Ten Problems in Hilbert Space, Bull. Amer. Math. Soc. 76 (1970), 887-933
  24. P. R. Halmos, A Hilbert Space Problem Book, 2nd ed., Springer (1982)
  25. G. Hedstrom, Norms of powers of absolutely convergent Fourier series, Michigan Math. J. 13 (1966), 393-416
  26. R. Hersh and T. Kato, High-accuracy stable difference schemes for well-posed initial-value problems, SIAM J. Numer. Anal. 16 (1979), 670-682
  27. T. Kato, Estimation of iterated matrices, with applications to the von Neumann condition, Numer. Math. 2 (1960), 22-29
  28. T. Kato, Some mapping theorems for the numerical range, Proc. Japan Acad. 41 (1965), 652-655
  29. J. F. B. M. Kraaijevanger, Two counterexamples related to the Kreiss matrix theorem, BIT 34 (1994), 113-119
  30. H.-O. Kreiss, Über die Stabilitätsdefinition für Differenzengleichungen die partielle Differentialgleichungen approximieren, Nord. Tidskr. Inf. (BIT) 2 (1962), 153-181
  31. H.-O. Kreiss, Über sachgemässe Cauchyprobleme, Math. Scand. 13 (1963), 109-128
  32. H.-O. Kreiss, On difference approximations of the dissipative type for hyperbolic differential equations, Comm. Pure Appl. Math. 17 (1964), 335-353
  33. E. G. Landau, Darstellung und Begründung einiger neuerer Ergebnisse der Funktionentheorie, in: Das Kontinuum, und andere Monographien, 2nd ed., Chelsea Publishing Company, 1929
  34. P. D. Lax and L. Nirenberg, On stability of difference schemes; a sharp form of Gå rding's inequality, Comm. Pure Appl. Math. 19 (1966), 473-492
  35. H. W. J. Lenferink and M. N. Spijker, A generalization of the numerical range of a matrix, Linear Algebra Appl. 140 (1990), 251-266
  36. H. W. J. Lenferink and M. N. Spijker, On a generalization of the resolvent condition in the Kreiss Matrix Theorem, Math. Comp. 57 (1991), 211-220
  37. H. W. J. Lenferink and M. N. Spijker, On the use of stability regions in the numerical analysis of initial value problems, ibid. 57 (1991), 221-237
  38. R. L. LeVeque and L. N. Trefethen, On the resolvent condition in the Kreiss matrix theorem, Nord. Tidskr. Inf. Beh. (BIT) 24 (1984), 584-591
  39. C. Lubich and O. Nevanlinna, On resolvent conditions and stability estimates, BIT 31 (1991), 293-313
  40. C. A. McCarthy, A strong resolvent condition does not imply power-boundedness, Chalmers Inst. of Tech. and Univ. of Göteborg, preprint # 15 (1971)
  41. C. A. McCarthy and J. Schwartz, On the norm of a finite boolean algebra of projections, and applications to theorems of Kreiss and Morton, Comm. Pure Appl. Math. 18 (1965), 191-201
  42. D. Michelson, Stability theory of difference approximations for multi-dimensional initial-boundary value problems, Math. Comp. 40 (1983), 1-45
  43. J. J. H. Miller, On power bounded operators and operators satisfying a resolvent condition, Numer. Math. 10 (1967), 389-396
  44. J. Miller and G. Strang, Matrix theorems for partial differential equations, Math. Scand. 18 (1966), 113-123
  45. K. W. Morton, On a matrix theorem due to H.-O. Kreiss, Comm. Pure Appl. Math. 17 (1964), 375-380
  46. K. W. Morton and S. Schechter, On the stability of finite difference matrices, SIAM J. Numer. Anal. Ser. B 2 (1965), 119-128
  47. O. Nevanlinna, Convergence of Iterations for Linear Equations, Lectures in Math., Birkhäuser, Basel (1993)
  48. A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Appl. Math. Sci. 44, Springer (1983)
  49. C. Pearcy, An elementary proof of the power inequality for the numerical radius, Michigan Math. J. 13 (1966), 289-291
  50. A. Pokrzywa, On an infinite-dimensional version of the Kreiss matrix theorem, in: Numerical Analysis and Mathematical Modelling, Banach Center Publ. 29, Inst. Math., Polish Acad. Sci., Warszawa, 1994, 45-50
  51. S. C. Reddy and L. N. Trefethen, Stability of the method of lines, Numer. Math. 62 (1992), 235-267
  52. R. D. Richtmyer and K. W. Morton, Difference Methods for Initial Value Problems, 2nd ed., Wiley Interscience (1967)
  53. A. L. Shields, On Möbius bounded operators, Acta Sci. Math. (Szeged) 40 (1978), 371-374
  54. H. Shintani and K. Toemeda, Stability of difference schemes for nonsymmetric linear hyperbolic systems with variable coefficients, Hiroshima Math. J. 7 (1977), 309-78
  55. M. N. Spijker, On a conjecture by LeVeque and Trefethen, BIT 31 (1991), 551-555
  56. J. C. Strikwerda, Finite Difference Schemes and Partial Differential Equations, Wadsworth & Brooks/Cole, Pacific Grove, Calif. (1989)
  57. J. C. Strikwerda and B. A. Wade, An extension of the Kreiss matrix theorem, SIAM J. Numer. Anal. 25 (1988), 1272-1278
  58. J. C. Strikwerda and B. A. Wade, Cesàro means and the Kreiss matrix theorem, Linear Algebra Appl. 145 (1991), 89-106
  59. B. Sz.-Nagy and C. Foiaş, On certain classes of power-bounded operators in Hilbert space, Acta Sci. Math. (Szeged) 27 (1966), 17-25
  60. B. Sz.-Nagy and C. Foiaş, Harmonic Analysis of Operators on Hilbert Space, North-Holland (1970)
  61. E. Tadmor, The equivalence of L2-stability, the resolvent condition, and strict H-stability, Linear Algebra Appl. 41 (1981), 151-159
  62. E. Tadmor, Complex symmetric matrices with strongly stable iterates, ibid. 78 (1986), 65-77
  63. E. Tadmor, Stability analysis of finite-difference, pseudospectral and Fourier-Galerkin approximations for time dependent problems, SIAM Rev. 29 (1987), 525-555
  64. V. Thomée, Stability theory for partial differential operators, ibid. 11 (1969), 152-195
  65. E. C. Titchmarsh, The Theory of Functions, 2nd ed., Oxford University Press (1979)
  66. B. A. Wade, Stability and sharp convergence estimates for symmetrizable difference operators, Ph.D. dissertation, University of Wisconsin-Madison, 1987
  67. B. A. Wade, Symmetrizable finite difference operators, Math. Comp. 54 (1990), 525-543
  68. O. B. Widlund, On the stability of parabolic difference schemes, ibid. 19 (1965), 1-13
  69. M. Yamaguti and T. Nogi, An algebra of pseudo difference schemes and its applications, Publ. Res. Inst. Math. Sci. Kyoto University 3 (1967), 151-66
  70. K. Yosida, Functional Analysis, 6th ed., Springer, New York, 1980
  71. J. Zemánek, On the Gelfand-Hille theorems, in: Functional Analysis and Operator Theory, Banach Center Publ. 30, Inst. Math., Polish Acad. Sci., Warszawa, 1994, 369-385
  72. A. Zygmund, Trigonometric Series, Volume I, 2nd ed., Cambridge University Press (1968)
Pages:
339-360
Main language of publication
English
Published
1997
Exact and natural sciences