Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
1997 | 38 | 1 | 297-314

Tytuł artykułu

On the differences of the consecutive powers of Banach algebra elements

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Let A denote a complex unital Banach algebra. We characterize properties such as boundedness, relative compactness, and convergence of the sequence ${x^{n}(x-1)}_{n ∈ ℕ}$ for an arbitrary x ∈ A, using σ(x) and resolvent conditions. Under these circumstances, we investigate elements in the peripheral spectrum, and give further conclusions, also involving the behaviour of ${x^{n}}_{n ∈ ℕ}$ and ${1/n ∑_{k=0}^{n-1} x^{k}}_{n ∈ ℕ}$.

Słowa kluczowe

Rocznik

Tom

38

Numer

1

Strony

297-314

Opis fizyczny

Daty

wydano
1997

Twórcy

  • Wulffstr. 8, D-12165 Berlin, Germany

Bibliografia

  • [1] G. R. Allan and T. J. Ransford, Power dominated elements in a Banach algebra, Studia Math. 94 (1989), 63-79.
  • [2] F. F. Bonsall and J. Duncan, Complete Normed Algebras, Springer, Berlin, 1973.
  • [3] L. Burlando, Uniformly $p$-ergodic operators and poles of the resolvent, Semester 'Linear Operators', Banach Center, Warszawa, 1994.
  • [4] J. B. Conway, A Course in Functional Analysis, Springer, New York, 1985.
  • [5] J. Esterle, Quasimultipliers, representations of H$^∞$, and the closed ideal problem for commutative Banach algebras, in: Radical Banach Algebras and Automatic Continuity, J. M. Bachar, W. G. Bade, P. C. Curtis Jr., H. G. Dales, and M. P. Thomas (eds.), Lecture Notes in Math. 975, Springer, Berlin, 1983, 66-162.
  • [6] I. Gelfand, Zur Theorie der Charaktere der Abelschen topologischen Gruppen, Mat. Sb. 9 (1941), 49-50.
  • [7] H. Heuser, Funktionalanalysis, 2. Aufl., Teubner, Stuttgart, 1986.
  • [8] S. Huang, Stability properties characterizing the spectra of operators on Banach spaces, J. Funct. Anal. 132 (1995), 361-382.
  • [9] B. Huppert, Angewandte Lineare Algebra, de Gruyter, Berlin, 1990.
  • [10] M. A. Kaashoek and T. T. West, Locally compact monothetic semi-algebras, Proc. London Math. Soc. (3) 18 (1968), 428-438.
  • [11] Y. Katznelson and L. Tzafriri, On power bounded operators, J. Funct. Anal. 68 (1986), 313-328.
  • [12] J. J. Koliha, Some convergence theorems in Banach algebras, Pacific J. Math. 52 (1974), 467-473.
  • [13] H.-O. Kreiss, Über die Stabilitätsdefinition für Differenzengleichungen, die partielle Differentialgleichungen approximieren, BIT 2 (1962), 153-181.
  • [14] M. Lin, On the uniform ergodic theorem, Proc. Amer. Math. Soc. 43 (1974), 337-340.
  • [15] M. Mbekhta and J. Zemánek, Sur le théorème ergodique uniforme et le spectre, C. R. Acad. Sci. Paris Sér. I Math. 317 (1993), 1155-1158.
  • [16] O. Nevanlinna, Convergence of Iterations for Linear Equations, Birkhäuser, Basel, 1993.
  • [17] J. I. Nieto, On the peripheral spectrum, Manuscripta Math. 32 (1980), 137-148.
  • [18] H. C. Rönnefarth, Charakterisierung des Verhaltens der Potenzen eines Elementes einer Banach-Algebra durch Spektraleigenschaften, Diplomarbeit, Technische Universität Berlin, 1993.
  • [19] J. C. Strikwerda and B. A. Wade, Cesàro means and the Kreiss matrix theorem, Linear Algebra Appl. 145 (1991), 89-106.
  • [20] A. Święch, Spectral characterization of operators with precompact orbit, Studia Math. 96 (1990), 277-282; 97 (1990), 266.
  • [21] A. E. Taylor and D. C. Lay, Introduction to Functional Analysis, 2nd ed., Wiley, New York, 1980.
  • [22] Vũ Quôc Phóng, A short proof of the Y. Katznelson's and L. Tzafriri's theorem, Proc. Amer. Math. Soc. 115 (1992), 1023-1024.
  • [23] H. D. Wacker, Über die Verallgemeinerung eines Ergodensatzes von Dunford, Arch. Math. (Basel) 44 (1985), 539-546.
  • [24] A. Wilansky, Summability through Functional Analysis, North-Holland, Amsterdam, 1984.
  • [25] T. Yoshimoto, On the speed of convergence in the $(C,α)$ uniform ergodic theorem for quasi-compact operators, J. Math. Anal. Appl. 176 (1993), 413-422.
  • [26] J. Zemánek, On the Gelfand-Hille theorems, in: Functional Analysis and Operator Theory, J. Zemánek (ed.), Banach Center Publ. 30, Inst. Math., Polish Acad. Sci., Warszawa, 1994, 369-385.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.bwnjournal-article-bcpv38i1p297bwm
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.