ArticleOriginal scientific text

Title

On the differences of the consecutive powers of Banach algebra elements

Authors 1

Affiliations

  1. Wulffstr. 8, D-12165 Berlin, Germany

Abstract

Let A denote a complex unital Banach algebra. We characterize properties such as boundedness, relative compactness, and convergence of the sequence {xn(x-1)}n for an arbitrary x ∈ A, using σ(x) and resolvent conditions. Under these circumstances, we investigate elements in the peripheral spectrum, and give further conclusions, also involving the behaviour of {xn}n and {1nk=0n-1xk}n.

Bibliography

  1. G. R. Allan and T. J. Ransford, Power dominated elements in a Banach algebra, Studia Math. 94 (1989), 63-79.
  2. F. F. Bonsall and J. Duncan, Complete Normed Algebras, Springer, Berlin, 1973.
  3. L. Burlando, Uniformly p-ergodic operators and poles of the resolvent, Semester 'Linear Operators', Banach Center, Warszawa, 1994.
  4. J. B. Conway, A Course in Functional Analysis, Springer, New York, 1985.
  5. J. Esterle, Quasimultipliers, representations of H^, and the closed ideal problem for commutative Banach algebras, in: Radical Banach Algebras and Automatic Continuity, J. M. Bachar, W. G. Bade, P. C. Curtis Jr., H. G. Dales, and M. P. Thomas (eds.), Lecture Notes in Math. 975, Springer, Berlin, 1983, 66-162.
  6. I. Gelfand, Zur Theorie der Charaktere der Abelschen topologischen Gruppen, Mat. Sb. 9 (1941), 49-50.
  7. H. Heuser, Funktionalanalysis, 2. Aufl., Teubner, Stuttgart, 1986.
  8. S. Huang, Stability properties characterizing the spectra of operators on Banach spaces, J. Funct. Anal. 132 (1995), 361-382.
  9. B. Huppert, Angewandte Lineare Algebra, de Gruyter, Berlin, 1990.
  10. M. A. Kaashoek and T. T. West, Locally compact monothetic semi-algebras, Proc. London Math. Soc. (3) 18 (1968), 428-438.
  11. Y. Katznelson and L. Tzafriri, On power bounded operators, J. Funct. Anal. 68 (1986), 313-328.
  12. J. J. Koliha, Some convergence theorems in Banach algebras, Pacific J. Math. 52 (1974), 467-473.
  13. H.-O. Kreiss, Über die Stabilitätsdefinition für Differenzengleichungen, die partielle Differentialgleichungen approximieren, BIT 2 (1962), 153-181.
  14. M. Lin, On the uniform ergodic theorem, Proc. Amer. Math. Soc. 43 (1974), 337-340.
  15. M. Mbekhta and J. Zemánek, Sur le théorème ergodique uniforme et le spectre, C. R. Acad. Sci. Paris Sér. I Math. 317 (1993), 1155-1158.
  16. O. Nevanlinna, Convergence of Iterations for Linear Equations, Birkhäuser, Basel, 1993.
  17. J. I. Nieto, On the peripheral spectrum, Manuscripta Math. 32 (1980), 137-148.
  18. H. C. Rönnefarth, Charakterisierung des Verhaltens der Potenzen eines Elementes einer Banach-Algebra durch Spektraleigenschaften, Diplomarbeit, Technische Universität Berlin, 1993.
  19. J. C. Strikwerda and B. A. Wade, Cesàro means and the Kreiss matrix theorem, Linear Algebra Appl. 145 (1991), 89-106.
  20. A. Święch, Spectral characterization of operators with precompact orbit, Studia Math. 96 (1990), 277-282; 97 (1990), 266.
  21. A. E. Taylor and D. C. Lay, Introduction to Functional Analysis, 2nd ed., Wiley, New York, 1980.
  22. Vũ Quôc Phóng, A short proof of the Y. Katznelson's and L. Tzafriri's theorem, Proc. Amer. Math. Soc. 115 (1992), 1023-1024.
  23. H. D. Wacker, Über die Verallgemeinerung eines Ergodensatzes von Dunford, Arch. Math. (Basel) 44 (1985), 539-546.
  24. A. Wilansky, Summability through Functional Analysis, North-Holland, Amsterdam, 1984.
  25. T. Yoshimoto, On the speed of convergence in the (C,α) uniform ergodic theorem for quasi-compact operators, J. Math. Anal. Appl. 176 (1993), 413-422.
  26. J. Zemánek, On the Gelfand-Hille theorems, in: Functional Analysis and Operator Theory, J. Zemánek (ed.), Banach Center Publ. 30, Inst. Math., Polish Acad. Sci., Warszawa, 1994, 369-385.
Pages:
297-314
Main language of publication
English
Published
1997
Exact and natural sciences