Department of Mathematics, Dalhousie University, Halifax, Nova Scotia, Canada B3H 3J5
Bibliografia
[1] B. Aupetit, Propriétés spectrales des algèbres de Banach, Lecture Notes in Math. 735, Springer, Berlin, 1979.
[2] M. D. Choi, E. Nordgren, H. Radjavi, P. Rosenthal and Y. Zhong, Triangularizing semigroups of quasinilpotent operators with nonnegative entries, Indiana Univ. Math. J. 42 (1993), 15-25.
[3] P. Fillmore, G. MacDonald, M. Radjabalipour, and H. Radjavi, Towards a classification of maximal unicellular bands, Semigroup Forum 49 (1994), 195-215.
[4] N. Jacobson, Lectures in Abstract Algebra II: Linear Algebra, Van Nostrand, Princeton, 1953.
[5] D. Hadwin, Radjavi's trace condition for triangularizability, J. Algebra 109 (1987), 184-192.
[6] D. Hadwin, E. Nordgren, M. Radjabalipour, H. Radjavi and P. Rosenthal, A nil algebra of bounded operators on Hilbert space with semisimple norm closure, Integral Equations Operator Theory 9 (1986), 739-743.
[7] D. Hadwin, On simultaneous triangularization of collections of operators, Houston J. Math. 17 (1991), 581-602.
[8] I. Kaplansky, The Engel-Kolchin theorem revisited, in: Contributions to Algebra, H. Bass, P. J. Cassidy, and J. Kovacik (eds.), Academic Press, New York, 1977, 233-237.
[9] A. Katavolos and H. Radjavi, Simultaneous triangularization of operators on a Banach space, J. London Math. Soc. (2) 41 (1990), 547-554.
[10] L. Lambrou, W. Longstaff and H. Radjavi, Spectral conditions and reducibility of operator semigroups, Indiana Univ. Math. J. 41 (1992), 449-464.
[11] J. Levitzki, Über nilpotente Unterringe, Math. Ann. 105 (1931), 620-627.
[12] V. I. Lomonosov, Invariant subspaces for the family of operators commuting with compact operators, Funktsional. Anal. i Prilozhen. 7 (3) (1973), 55-56 (in Russian).
[13] W. Longstaff and H. Radjavi, On permutability and submultiplicativity of spectral radius, Canad. J. Math. 47 (1995), 1007-1022.
[14] E. Nordgren, H. Radjavi and P. Rosenthal, Triangularizing semigroups of compact operators, Indiana Univ. Math. J. 33 (1984), 271-275.
[15] M. Omladič and H. Radjavi, Irreducible semigroups with multiplicative spectral radius, Linear Algebra Appl. 251 (1997), 59-72.
[16] H. Radjavi, A trace condition equivalent to simultaneous triangularizability, Canad. J. Math. 38 (1986), 376-386.
[17] H. Radjavi, The Engel-Jacobson theorem revisited, J. Algebra 111 (1987), 427-430.
[18] H. Radjavi, On the reduction and triangularization of semigroups of operators, J. Operator Theory 13 (1985), 63-71.
[19] H. Radjavi, On reducibility of semigroups of compact operators, Indiana Univ. Math. J. 39 (1990), 499-515.
[20] H. Radjavi and P. Rosenthal, Invariant Subspaces, Springer, Berlin, 1973.
[21] H. Radjavi and P. Rosenthal, The invariant subspace problem, Math. Intelligencer 4 (1982), 33-37.
[22] J. Ringrose, Super diagonal forms for compact linear operators, Proc. London Math. Soc. (3) 12 (1962), 367-384.
[23] V. S. Shul'man, On invariant subspaces of Volterra operators, Funktsional. Anal. i Prilozhen. 18 (2) (1984), 85-86 (in Russian).
[24] V. S. Shul'man, Invariant subspaces and spectral mapping theorems, in: Functional Analysis and Operator Theory, Banach Center Publ. 30, Inst. Math., Polish Acad. Sci., Warszawa, 1994, 313-325.
[25] J. Zemánek, Properties of the spectral radius in Banach algebras, in: Spectral Theory, Banach Center Publ. 8, PWN, Warszawa, 1982, 579-595.
[26] Y. Zhong, Functional positivity and invariant subspaces of semigroups of operators, Houston J. Math. 19 (1993), 239-262.