ArticleOriginal scientific text

Title

Hilbert modules and tensor products of operator spaces

Authors 1

Affiliations

  1. Department of Mathematics, University of Ljubljana, Ljubljana 1000, Slovenia

Abstract

The classical identification of the predual of B(H) (the algebra of all bounded operators on a Hilbert space H) with the projective operator space tensor product H¯^H is extended to the context of Hilbert modules over commutative von Neumann algebras. Each bounded module homomorphism b between Hilbert modules over a general C*-algebra is shown to be completely bounded with bcb=b. The so called projective operator tensor product of two operator modules X and Y over an abelian von Neumann algebra C is introduced and if Y is a Hilbert module, this product is shown to coincide with the Haagerup tensor product of X and Y over C.

Bibliography

  1. P. Ara and M. Mathieu, On the central Haagerup tensor product, Proc. Edinburgh Math. Soc. (2) 37 (1993), 161-174.
  2. D. P. Blecher, Tensor products of operator spaces II, Canad. J. Math. 44 (1992), 75-90.
  3. D. P. Blecher, A generalization of Hilbert modules, J. Funct. Anal. 136 (1996), 365-421.
  4. D. P. Blecher, On selfdual Hilbert modules, to appear in Fields Inst. Commun.
  5. D. P. Blecher, P. S. Muhly and V. I. Paulsen, Categories of operator modules (Morita equivalence and projective modules), to appear in Mem. Amer. Math. Soc.
  6. D. P. Blecher and V. I. Paulsen, Tensor products of operator spaces, J. Funct. Anal. 99 (1991), 262-292.
  7. D. P. Blecher and R. R. Smith, The dual of the Haagerup tensor product, J. London Math. Soc. (2) 45 (1992), 126-144.
  8. L. G. Brown, P. Green and M. A. Rieffel, Stable isomorphisms and strong Morita equivalence of C*-algebras, Pacific J. Math. 71 (1977), 349-363.
  9. A. Chatterjee and A. M. Sinclair, An isometry from the Haagerup tensor product into completely bounded operators, J. Operator Theory 28 (1992), 65-78.
  10. A. Chatterjee and R. R. Smith, The central Haagerup tensor product and maps between von Neumann algebras, J. Funct. Anal. 112 (1993), 97-120.
  11. E. Christensen and A. M. Sinclair, A survey of completely bounded operators, Bull. London Math. Soc. 21 (1989), 417-448.
  12. E. G. Effros and R. Exel, On multilinear double commutant theorems, Operator algebras and applications, Vol. 1, London Math. Soc. Lecture Note Ser. 135 (1988), 81-94.
  13. E. G. Effros and A. Kishimoto, Module maps and Hochschild-Johnson cohomology, Indiana Univ. Math. J. (1987), 257-276.
  14. E. G. Effros and Z.-J. Ruan, Representation of operator bimodules and their applications, J. Operator Theory 19 (1988), 137-157.
  15. E. G. Effros and Z.-J. Ruan, Self-duality for the Haagerup tensor product and Hilbert space factorizations, J. Funct. Anal. 100 (1991), 257-284.
  16. E. G. Effros and Z.-J. Ruan, A new approach to operator spaces, Canad. Math. Bull. 34 (1991), 329-337.
  17. E. G. Effros and Z.-J. Ruan, On the abstract characterization of operator spaces, Proc. Amer. Math. Soc. 119 (1993), 579-584.
  18. E. G. Effros and Z.-J. Ruan, Mapping spaces and liftings for operator spaces, Proc. London Math. Soc. (3) 69 (1994), 171-197.
  19. H. Halpern, Module homomorphisms of a von Neumann algebra into its center, Trans. Amer. Math. Soc. 140 (1969), 183-193.
  20. K. Jensen and K. Thomsen, Elements of KK-theory, Birkhäuser, Basel, 1991.
  21. R. V. Kadison and J. R. Ringrose, Fundamentals of the theory of operator algebras, Vols. 1, 2, Academic Press, London, 1983, 1986.
  22. I. Kaplansky, Modules over operator algebras, Amer. J. Math. 75 (1953), 839-858.
  23. E. C. Lance, Hilbert C*-modules, London Math. Soc. Lecture Note Ser. 210 (1995).
  24. B. Magajna, The Haagerup norm on the tensor product of operator modules, J. Funct. Anal. 129 (1995), 325-348.
  25. B. Magajna, Strong operator modules and the Haagerup tensor product, Proc. London Math. Soc. (3) 74 (1997), 201-240.
  26. G. J. Murphy, C*-algebras and operator theory, Academic Press, London, 1990.
  27. W. Paschke, Inner product modules over B*-algebras, Trans. Amer. Math. Soc. 182 (1973), 443-468.
  28. V. I. Paulsen, Completely bounded maps and dilations, Research Notes in Math. 146, Pitman, London, 1986.
  29. C. Pearcy, On unitary equivalence of matrices over the ring of continuous complex-valued functions on a Stonian space, Canad. J. Math. 15 (1963), 323-331.
  30. M. A. Rieffel, Morita equivalence for C*-algebras and W*-algebras, J. Pure Appl. Algebra 5 (1974), 51-96.
  31. Z. J. Ruan, Subspaces of C*-algebras, J. Funct. Anal. 76 (1988), 217-230.
  32. A. M. Sinclair and R. R. Smith, Hochschild cohomology of von Neumann algebras, London Math. Soc. Lecture Note Ser. 203 (1995).
  33. R. R. Smith, Completely bounded module maps and the Haagerup tensor product, J. Funct. Anal. 102 (1991), 156-175.
Pages:
227-246
Main language of publication
English
Published
1997
Exact and natural sciences