PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
1997 | 38 | 1 | 205-216
Tytuł artykułu

Singular evolution problems, regularization, and applications to physics, engineering, and biology

Autorzy
Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
Słowa kluczowe
Rocznik
Tom
38
Numer
1
Strony
205-216
Opis fizyczny
Daty
wydano
1997
Twórcy
  • Institute of Mathematics and Informatics, University of Mons-Hainaut, Avenue Maistriau, 15, 7000 Mons, Belgium
Bibliografia
  • [1] W. Arendt, Vector-valued Laplace transform and Cauchy problems, Israel J. Math. 59 (1987), 327-352.
  • [2] W. Arendt, O. El-Mennaoui and V. Keyantuo, Local integrated semigroups: evolution with jumps of regularity, J. Math. Anal. Appl. 186 (1994), 572-595.
  • [4] R. Beals, On the abstract Cauchy problem, J. Funct. Anal. 10 (1972), 281-299.
  • [3] R. Beals, Semigroups and abstract Gevrey spaces, ibid. 10 (1972), 300-398.
  • [5] J. Chazarain, Problèmes de Cauchy dans les espaces d'ultra-distributions, C. R. Acad. Sci. Paris Sér. A 226 (1968), 564-566.
  • [6] J. Chazarain, Problèmes de Cauchy abstraits et applications à quelques problèmes mixtes, J. Funct. Anal. 7 (1971), 386-446.
  • [7] I. Cioranescu, Local convoluted semigroups, to appear.
  • [8] I. Cioranescu et G. Lumer, Problèmes d'évolution régularisés par un noyau général K(t). Formule de Duhamel, prolongements, théorèmes de génération, C. R. Acad. Sci. Paris Sér. I Math. 319 (1994), 1273-1278.
  • [9] I. Cioranescu et G. Lumer, On K(t)-convoluted semigroups, in: Recent Developments in Evolution Equations, Pitman Res. Notes in Math. 324, 1995, 86-93.
  • [10] I. Cioranescu and L. Zsidó, ω-Ultradistributions and their applications to operator theory, in: Spectral Theory, Banach Center Publ. 8, 1982, PWN, Warszawa, 77-220.
  • [11] Ph. Clément, H. Heijmans et al., One parameter semigroups, CWI Monographs, North-Holland, Amsterdam, 1987.
  • [12] G. Da Prato, Semigruppi regolarizzabili, Ricerche Mat. 15 (1966), 223-248.
  • [13] G. Da Prato and E. Sinestrari, Differential operators with non dense domains, Ann. Scuola Norm. Sup. Pisa 14 (1987), 285-344.
  • [14] E. B. Davies and M. M. Pang, The Cauchy problem and a generalization of the Hille-Yosida theorem, Proc. London Math. Soc. (3) 55 (1987), 181-208.
  • [15] H. Emamirad, Systèmes pseudo différentiels d'évolution bien posés au sens des distributions de Beurling, Boll. Un. Mat. Ital. (6) 1 (1982), 303-322.
  • [16] L. Hörmander, An Introduction to Complex Analysis in Several Variables, Van Nostrand, Princeton, 1966.
  • [17] H. Kellermann and M. Hieber, Integrated semigroups, J. Funct. Anal. 84 (1989), 160-180.
  • [18] V. Keyantuo, The Weierstrass formula and the abstract Cauchy problem, to appear.
  • [19] V. Keyantuo, On the boundary value theorem for holomorphic semigroups, preprint Math. Dep. Univ. of Puerto Rico, Rio Piedras.
  • [20] H. Komatsu, Ultradistributions I, J. Fac. Sci. Univ. Tokyo Sect. IA 20 (1973), 25-105.
  • [21] R. deLaubenfels, C-semigroups and the Cauchy problem, J. Funct. Anal. 111 (1993), 44-61.
  • [22] J. L. Lions, Les semi-groupes distributions, Portugal. Math. 19 (1960), 141-164.
  • [23] G. Lumer, Solutions généralisées et semi-groupes intégrés, C. R. Acad. Sci. Paris Sér. I Math. 310 (1990), 577-582.
  • [24] G. Lumer, Applications de solutions généralisées et semi-groupes intégrés à des problèmes d'évolution, ibid. 311 (1990), 873-878.
  • [25] G. Lumer, Problèmes dissipatifs et analytiques mal posés : solutions et théorie asymptotique, ibid. 312 (1991), 831-836.
  • [26] G. Lumer, A (very) direct approach to locally lipschitz integrated semigroups and some new related results oriented towards applications, via generalized solutions, in: LSU Seminar Notes in Functional Analysis and PDES 1990-1991, Louisiana State University, Baton Rouge, 1991, 88-107.
  • [27] G. Lumer, Semi-groupes irréguliers et semi-groupes intégrés: application à l'identification de semi-groupes irréguliers analytiques et résultats de génération, C. R. Acad. Sci. Paris Sér. I Math. 314 (1992), 1033-1038.
  • [28] G. Lumer, Problèmes d'évolution avec chocs (changements brusques de conditions au bord) et valeurs au bord variables entre chocs consécutifs, ibid. 316 (1993), 41-46.
  • [29] G. Lumer, Models for diffusion-type phenomena with abrupt changes in boundary conditions, in Banach space and classical context. Asymptotics under periodic shocks, in: Evolution Equations, Control Theory and Biomathematics, Lecture Notes in Pure Appl. Math. 155, Marcel Dekker, New York, 1994, 337-351.
  • [30] G. Lumer, Evolution equations: Solutions for irregular evolution problems via generalized solutions and generalized initial values. Applications to periodic shocks models, Annales Saraviensis 5 (1) (1994), 1-102.
  • [31] G. Lumer, Singular problems, generalized solutions, and stability topologies, in: Partial Differential Equations. Models in Physics and Biology, Math. Res. 82, Akademie Verlag, Berlin, 1994, 204-215.
  • [32] I. Miyadera, On the generators of exponentially bounded C-semigroups, Proc. Japan Acad. Ser. A Math. Sci. 62 (1986), 239-242.
  • [33] F. Neubrander, Integrated semigroups and their applications to the abstract Cauchy problem, Pacific J. Math. 135 (1988), 111-155.
  • [34] P. Shapira, Théorie des hyperfonctions, Lecture Notes in Math. 126, Springer, 1970.
  • [35] E. Sinestrari, On the abstract Cauchy problem of parabolic type in spaces of continuous functions, J. Math. Anal. Appl. 107 (1985), 16-66.
  • [36] E. Sinestrari and W. von Wahl, On the solutions of the first boundary value problem for the linear parabolic equations, Proc. Roy. Soc. Edinburgh Sect. A 108 (1988), 339-355.
  • [37] H. Thieme, Semiflows generated by Lipschitz perturbations of non-densely defined operators, Differential Integral Equations 3 (1990), 1035-1066.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-bcpv38i1p205bwm
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.