ArticleOriginal scientific text

Title

Singular evolution problems, regularization, and applications to physics, engineering, and biology

Authors 1

Affiliations

  1. Institute of Mathematics and Informatics, University of Mons-Hainaut, Avenue Maistriau, 15, 7000 Mons, Belgium

Bibliography

  1. W. Arendt, Vector-valued Laplace transform and Cauchy problems, Israel J. Math. 59 (1987), 327-352.
  2. W. Arendt, O. El-Mennaoui and V. Keyantuo, Local integrated semigroups: evolution with jumps of regularity, J. Math. Anal. Appl. 186 (1994), 572-595.
  3. R. Beals, On the abstract Cauchy problem, J. Funct. Anal. 10 (1972), 281-299.
  4. R. Beals, Semigroups and abstract Gevrey spaces, ibid. 10 (1972), 300-398.
  5. J. Chazarain, Problèmes de Cauchy dans les espaces d'ultra-distributions, C. R. Acad. Sci. Paris Sér. A 226 (1968), 564-566.
  6. J. Chazarain, Problèmes de Cauchy abstraits et applications à quelques problèmes mixtes, J. Funct. Anal. 7 (1971), 386-446.
  7. I. Cioranescu, Local convoluted semigroups, to appear.
  8. I. Cioranescu et G. Lumer, Problèmes d'évolution régularisés par un noyau général K(t). Formule de Duhamel, prolongements, théorèmes de génération, C. R. Acad. Sci. Paris Sér. I Math. 319 (1994), 1273-1278.
  9. I. Cioranescu et G. Lumer, On K(t)-convoluted semigroups, in: Recent Developments in Evolution Equations, Pitman Res. Notes in Math. 324, 1995, 86-93.
  10. I. Cioranescu and L. Zsidó, ω-Ultradistributions and their applications to operator theory, in: Spectral Theory, Banach Center Publ. 8, 1982, PWN, Warszawa, 77-220.
  11. Ph. Clément, H. Heijmans et al., One parameter semigroups, CWI Monographs, North-Holland, Amsterdam, 1987.
  12. G. Da Prato, Semigruppi regolarizzabili, Ricerche Mat. 15 (1966), 223-248.
  13. G. Da Prato and E. Sinestrari, Differential operators with non dense domains, Ann. Scuola Norm. Sup. Pisa 14 (1987), 285-344.
  14. E. B. Davies and M. M. Pang, The Cauchy problem and a generalization of the Hille-Yosida theorem, Proc. London Math. Soc. (3) 55 (1987), 181-208.
  15. H. Emamirad, Systèmes pseudo différentiels d'évolution bien posés au sens des distributions de Beurling, Boll. Un. Mat. Ital. (6) 1 (1982), 303-322.
  16. L. Hörmander, An Introduction to Complex Analysis in Several Variables, Van Nostrand, Princeton, 1966.
  17. H. Kellermann and M. Hieber, Integrated semigroups, J. Funct. Anal. 84 (1989), 160-180.
  18. V. Keyantuo, The Weierstrass formula and the abstract Cauchy problem, to appear.
  19. V. Keyantuo, On the boundary value theorem for holomorphic semigroups, preprint Math. Dep. Univ. of Puerto Rico, Rio Piedras.
  20. H. Komatsu, Ultradistributions I, J. Fac. Sci. Univ. Tokyo Sect. IA 20 (1973), 25-105.
  21. R. deLaubenfels, C-semigroups and the Cauchy problem, J. Funct. Anal. 111 (1993), 44-61.
  22. J. L. Lions, Les semi-groupes distributions, Portugal. Math. 19 (1960), 141-164.
  23. G. Lumer, Solutions généralisées et semi-groupes intégrés, C. R. Acad. Sci. Paris Sér. I Math. 310 (1990), 577-582.
  24. G. Lumer, Applications de solutions généralisées et semi-groupes intégrés à des problèmes d'évolution, ibid. 311 (1990), 873-878.
  25. G. Lumer, Problèmes dissipatifs et analytiques mal posés : solutions et théorie asymptotique, ibid. 312 (1991), 831-836.
  26. G. Lumer, A (very) direct approach to locally lipschitz integrated semigroups and some new related results oriented towards applications, via generalized solutions, in: LSU Seminar Notes in Functional Analysis and PDES 1990-1991, Louisiana State University, Baton Rouge, 1991, 88-107.
  27. G. Lumer, Semi-groupes irréguliers et semi-groupes intégrés: application à l'identification de semi-groupes irréguliers analytiques et résultats de génération, C. R. Acad. Sci. Paris Sér. I Math. 314 (1992), 1033-1038.
  28. G. Lumer, Problèmes d'évolution avec chocs (changements brusques de conditions au bord) et valeurs au bord variables entre chocs consécutifs, ibid. 316 (1993), 41-46.
  29. G. Lumer, Models for diffusion-type phenomena with abrupt changes in boundary conditions, in Banach space and classical context. Asymptotics under periodic shocks, in: Evolution Equations, Control Theory and Biomathematics, Lecture Notes in Pure Appl. Math. 155, Marcel Dekker, New York, 1994, 337-351.
  30. G. Lumer, Evolution equations: Solutions for irregular evolution problems via generalized solutions and generalized initial values. Applications to periodic shocks models, Annales Saraviensis 5 (1) (1994), 1-102.
  31. G. Lumer, Singular problems, generalized solutions, and stability topologies, in: Partial Differential Equations. Models in Physics and Biology, Math. Res. 82, Akademie Verlag, Berlin, 1994, 204-215.
  32. I. Miyadera, On the generators of exponentially bounded C-semigroups, Proc. Japan Acad. Ser. A Math. Sci. 62 (1986), 239-242.
  33. F. Neubrander, Integrated semigroups and their applications to the abstract Cauchy problem, Pacific J. Math. 135 (1988), 111-155.
  34. P. Shapira, Théorie des hyperfonctions, Lecture Notes in Math. 126, Springer, 1970.
  35. E. Sinestrari, On the abstract Cauchy problem of parabolic type in spaces of continuous functions, J. Math. Anal. Appl. 107 (1985), 16-66.
  36. E. Sinestrari and W. von Wahl, On the solutions of the first boundary value problem for the linear parabolic equations, Proc. Roy. Soc. Edinburgh Sect. A 108 (1988), 339-355.
  37. H. Thieme, Semiflows generated by Lipschitz perturbations of non-densely defined operators, Differential Integral Equations 3 (1990), 1035-1066.
Pages:
205-216
Main language of publication
English
Published
1997
Exact and natural sciences