ArticleOriginal scientific text

Title

Spectral projections, semigroups of operators, and the Laplace transform

Authors 1

Affiliations

  1. Department of Mathematics, Ohio University, Athens, Ohio 45701, U.S.A.

Bibliography

  1. E. Albrecht and W. J. Ricker, Local spectral properties of constant coefficient differential operators in Lp(n), J. Operator Theory 24 (1990), 85-103.
  2. W. Arendt, Vector valued Laplace transforms and Cauchy problems, Israel J. Math. 59 (1987), 327-352.
  3. E. Berkson, T. A. Gillespie and S. Muhly, Abstract spectral decompositions guaranteed by the Hilbert transform, Proc. London Math. Soc. 53 (1986), 489-517.
  4. K. Boyadzhiev and R. deLaubenfels, Spectral theorem for generators of strongly continuous groups on a Hilbert space, Proc. Amer. Math. Soc. 120 (1994), 127-136.
  5. I. Colojoara and C. Foiaş, Theory of Generalized Spectral Operators, Gordon and Breach, New York, 1968.
  6. M. Cowling, I. Doust, A. McIntosh and A. Yagi, Banach space operators with a bounded H functional calculus, J. Austral. Math. Soc., to appear.
  7. R. deLaubenfels, d/dx, on C[0,1], is C1 scalar, Proc. Amer. Math. Soc. 103 (1988), 215-221.
  8. R. deLaubenfels, Unbounded well-bounded operators, strongly continuous semigroups and the Laplace transform, Studia Math. 103 (1992), 143-159.
  9. R. deLaubenfels, Regularized functional calculi and evolution equations, in: Proceedings of Evolution Equations Conference, Baton Rouge 1993, Marcel Dekker, 1994, 141-152.
  10. R. deLaubenfels, A functional calculus approach to semigroups of operators, in: Seminar Notes in Functional Analysis and PDEs, Louisiana State University, 1993/94, 83-107.
  11. R. deLaubenfels, H. Emamirad and M. Jazar, Regularized scalar operators, Appl. Math. Lett., to appear.
  12. R. deLaubenfels and S. Kantorovitz, The semi-simplicity manifold for arbitrary Banach spaces, J. Funct. Anal. 113 (1995), 138-167.
  13. I. Doust and R. deLaubenfels, Functional calculus, integral representations, and Banach space geometry, Quaestiones Math. 17 (1994), 161-171.
  14. H. R. Dowson, Spectral Theory of Linear Operators, Academic Press, 1978.
  15. N. Dunford and J. T. Schwartz, Linear Operators, Part III, Interscience, New York, 1971.
  16. I. Erdelyi and S. Wang, A Local Spectral Theory for Closed Operators, London Math. Soc. Lecture Note Ser. 105, Cambridge, 1985.
  17. J. E. Galé and T. Pytlik, Functional calculus for infinitesimal generators of holomorphic semigroups, preprint, 1995.
  18. J. A. Goldstein, Semigroups of Operators and Applications, Oxford, New York, 1985.
  19. R. Lange and B. Nagy, Semigroups and scalar-type operators in Banach spaces, J. Funct. Anal. 119 (1994), 468-480.
  20. R. Lange and S. Wang, New Approaches in Spectral Decomposition, Contemp. Math. 128, Amer. Math. Soc., Providence, 1992.
  21. F. Neubrander and B. Hennig, On representations, inversions and approximations of Laplace transforms in Banach spaces, Appl. Anal. 49 (1993), 151-170.
  22. A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer, New York, 1983.
  23. D. J. Ralph, Semigroups of well-bounded operators and multipliers, Thesis, Univ. of Edinburgh, 1977.
  24. D. V. Widder, The Laplace Transform, Princeton University Press, Princeton, 1946.
  25. F. H. Vasilescu, Analytic Functional Calculus and Spectral Decomposition, Reidel, Dordrecht, 1982.
  26. S. Zaidman, On the representation of vector-valued functions by Laplace transforms, Duke Math. J. 26 (1959), 189-191.
Pages:
193-204
Main language of publication
English
Published
1997
Exact and natural sciences