ArticleOriginal scientific text
Title
A simple proof of the spectral continuity of the Sturm-Liouville problem
Authors 1
Affiliations
- Institute of Mathematics, Polish Academy of Sciences, P.O. Box 137, 00-950 Warszawa, Poland
Abstract
The aim of this article is to present a simple proof of the theorem about perturbation of the Sturm-Liouville operator in Liouville normal form.
Bibliography
- G. Birkhoff and G.-C. Rota, Ordinary Differential Equations, Ginn-Blaisdell, Boston, 1962.
- R. Courant and D. Hilbert, Methods of Mathematical Physics, vol. 1, Interscience, New York, 1953.
- C. T. Fulton and S. Pruess, Eigenvalue and eigenfunction asymptotics for regular Sturm-Liouville problems, J. Math. Anal. Appl. 188 (1994), 297-340.
- T. Kato, Perturbation Theory for Linear Operators, Springer-Verlag, Berlin, 1966.
- B. M. Levitan and I. S. Sargsyan, Sturm-Liouville and Dirac Operators, Kluwer, Dordrecht, 1991.
- J. D. Pryce, Numerical Solution of Sturm-Liouville Problems, Clarendon Press, New York, 1993.
- M. H. Stone, Linear Transformations in Hilbert Space, American Mathematical Society, New York, 1932.