ArticleOriginal scientific text

Title

A simple proof of the spectral continuity of the Sturm-Liouville problem

Authors 1

Affiliations

  1. Institute of Mathematics, Polish Academy of Sciences, P.O. Box 137, 00-950 Warszawa, Poland

Abstract

The aim of this article is to present a simple proof of the theorem about perturbation of the Sturm-Liouville operator in Liouville normal form.

Bibliography

  1. G. Birkhoff and G.-C. Rota, Ordinary Differential Equations, Ginn-Blaisdell, Boston, 1962.
  2. R. Courant and D. Hilbert, Methods of Mathematical Physics, vol. 1, Interscience, New York, 1953.
  3. C. T. Fulton and S. Pruess, Eigenvalue and eigenfunction asymptotics for regular Sturm-Liouville problems, J. Math. Anal. Appl. 188 (1994), 297-340.
  4. T. Kato, Perturbation Theory for Linear Operators, Springer-Verlag, Berlin, 1966.
  5. B. M. Levitan and I. S. Sargsyan, Sturm-Liouville and Dirac Operators, Kluwer, Dordrecht, 1991.
  6. J. D. Pryce, Numerical Solution of Sturm-Liouville Problems, Clarendon Press, New York, 1993.
  7. M. H. Stone, Linear Transformations in Hilbert Space, American Mathematical Society, New York, 1932.
Pages:
183-186
Main language of publication
English
Published
1997
Exact and natural sciences