PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
1997 | 38 | 1 | 17-23
Tytuł artykułu

Unitary extensions of isometries, generalized interpolation and band extensions

Autorzy
Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of this paper is to give a very brief account of some applications of the method of unitary extensions of isometries to interpolation and extension problems.
Słowa kluczowe
Rocznik
Tom
38
Numer
1
Strony
17-23
Opis fizyczny
Daty
wydano
1997
Twórcy
  • Centro de Matemáticas, Facultad de Ciencias, José M. Montero 3006, ap. 503, Montevideo, Uruguay
Bibliografia
  • [AF] R. Arocena and F. Montans, On a general bidimensional extrapolation problem, Colloq. Math. 64 (1993), 3-12.
  • [A.1] R. Arocena, Schur analysis of a class of translation invariant forms, in: Analysis and Partial Differential Equations: A Collection of Papers dedicated to Mischa Cotlar, C. Sadosky (ed.), Marcel Dekker, New York and Basel, 1990.
  • [A.2] R. Arocena, Some remarks on lifting and interpolation problems, Rev. Un. Mat. Argentina 37 (1991), 200-211.
  • [A.3] R. Arocena, Unitary colligations and parametrization formulas, Ukrainian Math. J. 46 (1994), 147-154.
  • [A.4] R. Arocena, On the Nagy-Foiaş-Parrott commutant lifting theorem, in: Contemp. Math. 189, Amer. Math. Soc., 1995, 55-64.
  • [A.5] R. Arocena, Unitary extensions of isometries and interpolation problems: (1) dilation and lifting theorems, Publ. Mat. Uruguay 6 (1995), 137-158.
  • [AG] D. Z. Arov and L. Z. Grossman, Scattering matrices in the theory of unitary extensions of isometric operators, Soviet Math. Dokl. 27 (1983), 518-522.
  • [DG.1] H. Dym and I. Gohberg, Extensions of kernels of Fredholm operators, J. Analyse Math. 42 (1982/83), 51-97.
  • [DG.2] H. Dym and I. Gohberg, A new class of contractive interpolants and maximun entropy principles, in: Oper. Theory Adv. Appl. 29, Birkhäuser, 1988, 117-150.
  • [FF] C. Foiaş and A. E. Frazho, The Commutant Lifting Approach to Interpolation Problems, Birkhäuser, Basel, 1990.
  • [FFG] C. Foiaş, A. E. Frazho and I. Gohberg, Central intertwining lifting, maximum entropy and their permanence, Integral Equations Operator Theory 18 (1994), 166-201.
  • [GKW.1] I. Gohberg, M. A. Kaashoek and H. J. Woerdeman, The band method for positive and contractive extension problems, J. Operator Theory 22 (1989), 109-115.
  • [GKW.2] I. Gohberg, M. A. Kaashoek and H. J. Woerdeman, The band method for positive and contractive extension problems. An alternative version and new applications, Integral Equations Operator Theory 12 (1989), 343-382.
  • [GKW.3] I. Gohberg, M. A. Kaashoek and H. J. Woerdeman, A maximum entropy principle in the general framework of the band method, J. Funct. Anal. 95 (1991), 231-254.
  • [N] N. K. Nikol'skiĭ, Treatise on the Shift Operator, Springer, New York, 1986.
  • [P] S. Parrott, On a quotient norm and the Sz.-Nagy-Foiaş lifting theorem, J. Funct. Anal. 30 (1978), 311-328.
  • [S] D. Sarason, Generalized interpolation in $H^∞$, Trans. Amer. Math. Soc. 127 (1967), 179-203.
  • [Sz.-NF] B. Sz.-Nagy and C. Foiaş, Harmonic Analysis of Operators on Hilbert Space, North-Holland, Amsterdam, 1970.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-bcpv38i1p17bwm
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.