Czasopismo
Tytuł artykułu
Autorzy
Warianty tytułu
Języki publikacji
Abstrakty
It is shown that for n ≥ 2 and p > 2, where p is not an even integer, the only balls in the Carathéodory distance on $H_{p,n} = {z ∈ ℂ^{n}: ∥ z∥_{p} < 1 }$ which are balls with respect to the complex $l_{p}$ norm in $ℂ^{n}$ are those centered at the origin.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Numer
Strony
75-83
Opis fizyczny
Daty
wydano
1996
Twórcy
autor
- Department of Mathematics, Technion - Israel Institute of Technology, Haifa 32000, Israel
autor
- Department of Mathematics, Technion - Israel Institute of Technology, Haifa 32000, Israel
Bibliografia
- [D] S. Dineen, The Schwarz lemma, Oxford Mathematical Monograph, Clarendon Press, 1989.
- [JP] M. Jarnicki and P. Pflug, Invariant distances and metrics in complex analysis, Walter de Gruyter, 1993.
- [JPZ] M. Jarnicki, P. Pflug and R. Zeinstra, Geodesics for convex complex ellipsoids, Annali d. Scuola Normale Superiore di Pisa XX Fasc. 4 (1993), 535-543.
- [R] W. Rudin, Function theory in the unit ball of $ℂ^{n}$, Springer, New York, 1980.
- [Sch] B. Schwarz, Carathéodory balls and norm balls of the domain $H = {(z_1,z_2) ∈ ℂ^2: |z_1| + |z_2| < 1}$, Israel J. of Math. 84 (1993), 119-128.
- [Sr] U. Srebro, Carathéodory balls and norm balls in $H ={z ∈ ℂ^n: ∥z∥_1 < 1}$, Israel J. Math. 89 (1995), 61-70.
- [Z] W. Zwonek, Carathéodory balls and norm balls of the domains $H_n = {z ∈ ℂ^n: |z_1| + ... + |z_n| < 1}$, Israel J. Math. 89 (1995), 71-76.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-bcpv37i1p75bwm