ArticleOriginal scientific text

Title

Carathéodory balls and norm balls in Hp,n={zn:zp<1}

Authors 1, 1

Affiliations

  1. Department of Mathematics, Technion - Israel Institute of Technology, Haifa 32000, Israel

Abstract

It is shown that for n ≥ 2 and p > 2, where p is not an even integer, the only balls in the Carathéodory distance on Hp,n={zn:zp<1} which are balls with respect to the complex lp norm in n are those centered at the origin.

Bibliography

  1. [D] S. Dineen, The Schwarz lemma, Oxford Mathematical Monograph, Clarendon Press, 1989.
  2. [JP] M. Jarnicki and P. Pflug, Invariant distances and metrics in complex analysis, Walter de Gruyter, 1993.
  3. [JPZ] M. Jarnicki, P. Pflug and R. Zeinstra, Geodesics for convex complex ellipsoids, Annali d. Scuola Normale Superiore di Pisa XX Fasc. 4 (1993), 535-543.
  4. [R] W. Rudin, Function theory in the unit ball of n, Springer, New York, 1980.
  5. [Sch] B. Schwarz, Carathéodory balls and norm balls of the domain H={(z1,z2)2:|z1|+|z2|<1}, Israel J. of Math. 84 (1993), 119-128.
  6. [Sr] U. Srebro, Carathéodory balls and norm balls in H={zn:z1<1}, Israel J. Math. 89 (1995), 61-70.
  7. [Z] W. Zwonek, Carathéodory balls and norm balls of the domains Hn={zn:|z1|+...+|zn|<1}, Israel J. Math. 89 (1995), 71-76.
Pages:
75-83
Main language of publication
English
Published
1996
Exact and natural sciences