ArticleOriginal scientific text
Title
The Douady-Earle extension of quasihomographies
Authors 1, 2
Affiliations
- Dept. of Mathematics, Osaka City University, Sugimoto, Sumiyoshi-ku, Osaka, Japan
- Institute of Mathematics, Polish Academy of Sciences, Narutowicza 56, PL-90-136 Łódź, Poland
Abstract
Quasihomography is a useful notion to represent a sense-preserving automorphism of the unit circle T which admits a quasiconformal extension to the unit disc. For K ≥ 1 let denote the family of all K-quasihomographies of T. With any we associate the Douady-Earle extension and give an explicit and asymptotically sharp estimate of the norm of the complex dilatation of .
Bibliography
- [DE] A. Douady and C.I. Earle, Conformally natural extension of homeomorphisms of the circle, Acta Math. 157 (1986), 23-48.
- [K] J.G. Krzyż, Quasicircles and harmonic measure, Ann. Acad. Sci. Fenn. 12 (1987), 19-24.
- [LP] A. Lecko and D. Partyka, An alternative proof of a result due to Douady and Earle, Ann. Univ. Mariae Curie-Skłodowska Sectio A 42 (1988), 59-68.
- [P1] D. Partyka, The maximal dilatation of Douady and Earle extension of a quasisymmetric automorphism of the unit circle, Ann. Univ. Mariae Curie-Skłodowska Sectio A 44 (1990), 45-57.
- [P2] D. Partyka, A distortion theorem for quasiconformal automorphisms of the unit disc, Ann. Polon. Math. 55 (1991), 277-281.
- [P3] D. Partyka, The maximal value of the function
, Bull. Soc. Sci. Lettres Łódź 45 Sér. Rech. Déform. 20 (1995), 49-55. - [Z1] J. Zając, The distortion function
and quasihomographies, Current Topics of Analytic Function Theory, (1992), 403-428. - [Z2] J. Zając, Quasihomographies, Monograph, Preprint.