ArticleOriginal scientific text

Title

Spinors in braided geometry

Authors 1, 2

Affiliations

  1. Instituto de Matematicas, UNAM, Area de la Investigacion Cientifica, Circuito Exterior, Ciudad Universitaria, México DF, CP 04510 México
  2. Facultad de Estudios Superiores Cuautitlan, UNAM, Apartado Postal , #25 Cuautitlan Izcalli, CP 54700, México

Abstract

Let V be a ℂ-space, σEnd(V2) be a pre-braid operator and let Fl(V2,). This paper offers a sufficient condition on (σ,F) that there exists a Clifford algebra Cl(V,σ,F) as the Chevalley F-dependent deformation of an exterior algebra Cl(V,σ,0)V(σ). If σσ-1 and F is non-degenerate then F is not a σ-morphism in σ-braided monoidal category. A spinor representation as a left Cl(V,σ,F)-module is identified with an exterior algebra over F-isotropic ℂ-subspace of V. We give a sufficient condition on braid σ that the spinor representation is faithful and irreducible.

Bibliography

  1. R. Bautista, A. Criscuolo, M. Đurđević, M. Rosenbaum and J.D. Vergara, Quantum Clifford algebras from spinor representations, J. Math. Phys. (1996), to appear.
  2. N. Bourbaki, Algébre, chap. 9: formes sesquilinéaries et formes quadratiques, Paris, Hermann, 1959.
  3. É. Cartan, The Theory of Spinors, Dover Pub., New York, 1966.
  4. A. Crumeyrolle, Orthogonal and Symplectic Clifford Algebras. Spinor Structures, Mathematics and its Applications vol. 57, Kluwer Academic Publishers, 1990.
  5. M. Đurđević, Braided Clifford algebras as braided quantum groups, Adv. Apppl. Cliff. Algebras 4 (2) (1994), 145-156.
  6. M. Đurđević, Generalized braided quantum groups, Isr. J. Math. (1996), to appear.
  7. T. Hayashi, Q-analogues of Clifford and Weyl algebras - spinor and oscilator representations of quantum enveloping algebras, Commun. Math. Phys. 127 (1990), 129-144.
  8. S. Majid, Braided groups and algebraic quantum field theories, Lett. Math. Phys. 22 (1991), 167-176.
  9. S. Majid, Braided groups, J. Pure and Applied Algebra 86 (1993), 187-221.
  10. S. Majid, Transmutation theory and rank for quantum braided groups, Math. Proc. Camb. Phil. Soc. 113 (1993), 45-70.
  11. S. Majid, Free braided differential calculus, braided binomial theorem and the braided exponential map, J. Math. Phys. 34 (1993), 4843-4856.
  12. S. Majid, Foundations of Quantum Group Theory, Cambridge University Press 1995.
  13. Z. Oziewicz, E. Paal and J. Różański, Derivations in braided geometry, Acta Physica Polonica B 26 (7) (1995), 1253-1273.
  14. Z. Oziewicz, Clifford algebra for Hecke braid, in: Clifford Algebras and Spinor Structures, R. Ablamowicz and P. Lounesto (ed.), Mathematics and Its Applications vol. 321, Kluwer Academic Publishers, Dordrecht 1995, pp. 397-411.
  15. S. Shnider and S. Sternberg, Quantum Groups, from coalgebras to Drinfeld algebras a guided tour, International Press Incorporated, Boston, 1993.
  16. M. E. Sweedler, Hopf Algebras, Benjamin, Inc., New York, 1969.
  17. S. L. Woronowicz, Differential calculus on compact matrix pseudogroups (quantum groups), Commun. Math. Phys. 122 (1989), 125-170.
Pages:
315-325
Main language of publication
English
Published
1996
Exact and natural sciences