PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
1996 | 37 | 1 | 295-314
Tytuł artykułu

The Clifford bundle and the dynamics of the superparticle

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Using the Clifford bundle formalism we show that Frenet equations of classical differential geometry or its spinor version are the appropriate equations of motion for a classical spinning particle. We show that particular values of the curvatures appearing in Darboux bivector of the spinor form of Frenet equations produce a "classical" Dirac-Hestenes equation. Using the concept of multivector Lagrangians and Hamiltonians we provide a Lagrangian and Hamiltonian approach for our theory which then makes immediately contact with Berezin-Marinov model, the Barut-Zanghi model, and the supercalculus (which acquires an obvious geometrical meaning in terms of geometrical objects living in ordinary spacetime) and suggests calling our theory the dynamics of the superparticle.
Słowa kluczowe
Rocznik
Tom
37
Numer
1
Strony
295-314
Opis fizyczny
Daty
wydano
1996
Twórcy
  • Department of Applied Mathematics, State University at Campinas (UNICAMP), CP 6065, 13081-970 Campinas, S.P., Brazil
  • Department of Applied Mathematics, State University at Campinas (UNICAMP), CP 6065, 13081-970 Campinas, S.P., Brazil
autor
  • J. Stefan Institute, University of Ljubljana, 61111 Ljubljana, Slovenia
Bibliografia
  • [1] A. O. Barut and N. Zanghi, Classical model of Dirac electron, Phys. Rev. Lett. 52 (1984), 2009-2012.
  • [2] F. A. Berezin, The Method of Second Quantization, Academic Press, (1966).
  • [3] F. A. Berezin and M. S. Marinov, Particle spin dynamics as the Grassmann variant of classical mechanics, Ann. Physics, 104 (1977), 336-362.
  • [4] F. A. Berezin, Introduction to Supersymmetry, D. Reidel Publ. Co., Dordrecht, (1987).
  • [5] N. N. Bogolubov, A. A. Logunov and I. T. Todorov, Introduction to Axiomatic Quantum Field Theory, W. A. Benjamin Inc., Reading, Massachusetts (1975).
  • [6] R. Coquereaux, A. Jadczyk and D. Kastler, Differential and integral geometry of Grassmann algebras, Rev. Math. Phys. 3, (1991), 63-99.
  • [7] C. J. L. Doran, A. N. Lasenby and S. F. Gull, Grassmann mechanics, multivector derivatives and geometric algebra, in Z. Oziewicz, A. Borowiec and B. Jancewicz (eds), Spinors, Twistors and Clifford Algebra, Kluwer Acad. Publ., Dordrecht (1992).
  • [8] M. A. Faria-Rosa, E. Recami and W. A. Rodrigues Jr, A satisfactory formalism for magnetic monopoles by Clifford algebras, Phys. Lett. B173 (1986) 233-236.
  • [9] V. L. Figueiredo, E. C. de Oliveira and W. A. Rodrigues Jr, Covariant, algebraic and operator spinors, Int. J. Theor. Phys. 29 (1990), 371-395.
  • [10] V. L. Figueiredo, E. C. de Oliveira and W. A. Rodrigues Jr, Clifford algebras and the hidden geometric nature of spinors, Algebras, Groups and Geometries 7 (1990), 153-198.
  • [11] P. G. O. Freund, Supersymmetry, Cambridge University Press, (1986).
  • [12] G. Fryberger, On generalized electromagnetism and Dirac algebra, Found. Phys. 19 (1989), 125-159.
  • [13] F. Gursey, Relativistic kinematics of a classical point particle in spinor form, Il Nuovo Cimento 5 (1957), 784-809.
  • [14] D. Hestenes and G. Sobczyk, Clifford Algebra to Geometrical Calculus, D. Reidel Publ. Co., Dordrecht (1984).
  • [15] D. Hestenes, The zitterbewegung interpretation of quantum mechanics, Found. Phys. 20 (1990), 1213-1232.
  • [16] D. Hestenes, Hamiltonian mechanics with geometric calculus, in Z. Oziewicz, A. Borowiec and B. Jancewicz (eds.), Spinors, Twistors and Clifford Algebra, Kluwer Acad. Publ., Dordrecht (1992).
  • [17] A. N. Lasenby, C. J. L. Doran and S. G. Gull, A multivector derivative approach to Lagrangian field theory, Found. Phys. 23 (1993), 1295-1328.
  • [18] P. Lounesto, Clifford algebras and Hestenes spinors, Found. Phys. 223 (1993), 1203-1238.
  • [19] A. Maia Jr, M. A. Faria-Rosa, E. Recami and W. A. Rodrigues Jr, Magnetic monopoles without strings in the Kähler-Clifford algebra bundle, J. Math. Phys. 31 (1990), 502-505.
  • [20] C. Misner, K. S. Thorne and J. A. Wheeler, Gravitation, W. H. Freeman and Co., San Francisco (1973).
  • [21] M. Pavšič, E. Recami, W.A. Rodrigues Jr, G. Macarrone, F. Raciti, and G. Salesi, Spin and electron structure, Phys. Lett. B 318 (1993), 481-488.
  • [22] W. A. Rodrigues Jr and M. A. Faria-Rosa, The meaning of time in relativity, and Einstein's later view of the twin paradox, Found. Phys. 19, (1989), 705-724.
  • [23] W. A. Rodrigues Jr, A. Maia Jr, M. A. Faria-Rosa and E. Recami, The classical problem of the charge pole motion, Phys. Lett. B220 (1989), 195-199.
  • [24] W. A. Rodrigues Jr, A. Maia Jr, M. A. Faria-Rosa and E. Recami, Physico mathematical approach to monopoles without strings, Hadronic Journal. 12 (1989), 187-212.
  • [25] W. A. Rodrigues Jr, A comment on generalized electromagnetism and Dirac algebra, Found. Phys. Lett. 3 (1990), 95-99.
  • [26] W. A. Rodrigues Jr and Q. A. G. de Souza, A Clifford bundle approach to gravitational theory, in J. C. D'Olivo, E. Nahmed-Achar, M. Rosembaum, M. P. Ryan Jr, L. F. Urrutia and F. Zertuche (eds.): Relativity and Gravitation. Classical and Quantum. Proc. of SILARG VII, pp. 220-226, World Scientific Publ. Co., Singapore (1991).
  • [27] W. A. Rodrigues Jr and Q. A. G. de Souza, The Clifford bundle and the nature of the gravitational field, Found. Phys. 23 (1993), 1465-1490.
  • [28] W. A. Rodrigues Jr and J. Vaz Jr, Zitterbewegung and electron structure, in F. Brackx, R. Delanghe and H. Serras (eds.), Clifford Algebra and Their Applications in Mathematical Physics, pp 397-404, Kluwer Acad. Publ., Dordrecht (1993).
  • [29] W. A. Rodrigues Jr, J. Vaz Jr, E. Recami, and G. Salesi, About zitterbewegung and electron structure, Phys. Lett. B 318 (1993), 623-628.
  • [30] W. A. Rodrigues Jr, Q. A. G. de Souza and J. Vaz Jr, Lagrangian formulation in the Clifford bundle of the Dirac-Hestenes equation on Riemann-Cartan manifold, in P. Letelier and W. A. Rodrigues Jr (eds.): Gravitation. The Spacetime Structure. Proc. of SILARG VIII, Aguas de Lindóia, S.P., Brazil (1993), pp 522-531; World Scientific Publ. Co. (1994).
  • [31] W. A. Rodrigues Jr, Q. A. G. de Souza, J. Vaz Jr, and P. Lounesto, Dirac-Hestenes spinor fields, their covariant derivatives and their formulation on Riemann-Cartan manifolds, RT 64/93 IMECC-UNICAMP, subm for publication.
  • [32] W. A. Rodrigues Jr and J. Vaz Jr, Classical wave equation of the superparticle interacting with an external electromagnetic field, to be submmited for publication (1995).
  • [33] W. A. Rodrigues Jr, Q. A. G. de Souza and J. Vaz Jr, Spinor fields and superfields as equivalence classes of exterior algebra fields, in R. Ablamowicz and P. Lounesto (eds.) Clifford Algebras and Spinor Structures - Crumeyrole Memorial Volume, Kluwer Acad. Publ., Dordrecht (1995).
  • [34] R. K. Sachs and H. Wu, General Relativity for Mathematicians, Springer-Verlag, New York (1977).
  • [35] A. Salam and J. Strathdee, Supergauge transformations, Nucl. Phys. B76 (1974), 477-482.
  • [36] Q. A. G. de Souza and W. A. Rodrigues Jr, The Dirac operator and the structure of Riemann-Cartan-Weyl spaces, in P. Letelier and W. A. Rodrigues Jr (eds.): Gravitation. The Spacetime Structure. Proc. of SILARG VIII, Aguas de Lindóia, S.P., Brazil (1993), pp 177-210; World Scientific Publ. Co. (1994).
  • [37] J. Takabayashi, Relativistic hydrodynamics of the Dirac matter, Suppl. Progr. Theor. Phys. 4 (1957), 1-80.
  • [38] J. Vaz Jr, The Barut and Zanghi model, and some generalizations, Phys. Lett. B 344 (1995), 149-164.
  • [39] J. Vaz Jr, and W. A. Rodrigues Jr, On the equivalence of Maxwell and Dirac eq uations, and quantum mechanics, Int. J. Theor. Phys., 32 (1993), 945-958.
  • [40] S. Weinberg, Gravitation and Cosmology, John Wiley & Sons, Inc., New York (1972).
  • [41] B. de Witt, Supermanifolds, Cambridge University Press, (1984).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-bcpv37i1p295bwm
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.