ArticleOriginal scientific text

Title

Intersection-theoretical computations on {οverleM}g

Authors 1

Affiliations

  1. Faculteit der Wiskunde en Informatica, Universiteit van Amsterdam, Plantage Muidergracht 24, 1018 TV Amsterdam, Netherlands

Abstract

In this paper we explore several concrete problems, all more or less related to the intersection theory of the moduli space of (stable) curves, introduced by Mumford [Mu 1].

Bibliography

  1. [A-C] E. Arbarello and M. Cornalba, The Picard groups of the moduli spaces of curves, Topology 26 (1987), 153-171.
  2. [BCOV] M. Bershadsky, S. Cecotti, H. Ooguri and C. Vafa, Kodaira-Spencer Theory of Gravity and Exact Results for Quantum String Amplitudes, Comm. Math. Phys. 165 (1994), 311-428.
  3. [C-H] M. Cornalba and J. Harris, Divisor classes associated to families of stable varieties, with applications to the moduli space of curves, Ann. Scient. École Norm. Sup. (4) 21 (1988), 455-475.
  4. [Fa 1] C. Faber, Chow rings of moduli spaces of curves I: The Chow ring of οverleM3, Ann. of Math. 132 (1990), 331-419.
  5. [Fa 2] C. Faber, Chow rings of moduli spaces of curves II: Some results on the Chow ring of οverleM4, Ann. of Math. 132 (1990), 421-449.
  6. [Fa 3] C. Faber, Some results on the codimension-two Chow group of the moduli space of curves, in: Algebraic Curves and Projective Geometry (eds. E. Ballico and C. Ciliberto), Lecture Notes in Math. 1389, Springer, Berlin, 1988, 66-75.
  7. [Ha] R. Hartshorne, Ample Subvarieties of Algebraic Varieties, Lecture Notes in Math. 156, Springer, Berlin, 1970.
  8. [Hi 1] F. Hirzebruch, Automorphe Formen und der Satz von Riemann-Roch, in: Symposium Internacional de Topologí a Algebraica (México 1956), Universidad Nacional Autónoma de México and UNESCO, Mexico City, 1958, 129-144; or: Gesammelte Abhandlungen, Band I, Springer, Berlin, 1987, 345-360.
  9. [Hi 2] F. Hirzebruch, Characteristic numbers of homogeneous domains, in: Seminars on analytic functions, vol. II, IAS, Princeton 1957, 92-104; or: Gesammelte Abhandlungen, Band I, Springer, Berlin, 1987, 361-366.
  10. [Ko] M. Kontsevich, Intersection Theory on the Moduli Space of Curves and the Matrix Airy Function, Comm. Math. Phys. 147 (1992), 1-23.
  11. [Liu] Qing Liu, Courbes stables de genre 2 et leur schéma de modules, Math. Ann. 295 (1993), 201-222.
  12. [Mu 1] D. Mumford, Towards an enumerative geometry of the moduli space of curves, in: Arithmetic and Geometry II (eds. M. Artin and J. Tate), Progr. Math. 36 (1983), Birkhäuser, 271-328.
  13. [Mu 2] D. Mumford, On the Kodaira Dimension of the Siegel Modular Variety, in: Algebraic Geometry-Open Problems (eds. C. Ciliberto, F. Ghione and F. Orecchia), Lecture Notes in Math. 997, Springer, Berlin, 1983, 348-375.
  14. [Wi] E. Witten, Two dimensional gravity and intersection theory on moduli space, in: Surveys in Differential Geometry (Cambridge, MA, 1990), Lehigh Univ., Bethlehem, PA, 1991, 243-310.
Pages:
71-81
Main language of publication
English
Published
1996
Exact and natural sciences