ArticleOriginal scientific text
Title
Intertwining spaces associated with q-analogues of the Young symmetrizers in the Hecke algebra
Authors 1, 2
Affiliations
- L.I.R., Université de Rouen, Place E. Blondel, B.P. 118, 76134 Mont-Saint-Aignan Cedex, France
- L.I.T.P., Université Paris 7, 2 place Jussieu, 75251 Paris Cedex 05, France
Abstract
Abstract. Let H be the Hecke algebra of the symmetric group. With each subset S ⊂ [1,n-1], we associate two idempotents and which are q-deformations of the symmetrizer and antisymmetrizer relative to the Young subgroup generated by the simple transpositions . We give here explicit bases for the intertwining space , indexed by the double classes . We also compute bases and characters of the right ideals {\goth I}(I,J)= □_{S_1}H ∇_{S_2}H.
Bibliography
- G. E. Andrews, The theory of partitions, Addison-Wesley, London, 1976.
- C. W. Curtis, I. Reiner, Representations theory of finite groups and associative algebras, Interscience, New York, 1962.
- R. Dipper and G. James, Blocks and idempotents of Hecke algebras of general linear groups, Proc. London Math. Soc. (3) 54 (1987), 57-82.
- G. Duchamp, D. Krob, B. Leclerc, A. Lascoux, T. Scharf, J. Y. Thibon, Euler-Poincaré characteristic and polynomial representations of Iwahori-Hecke algebras, Publ. Res. Inst. Math. Sci. 31 (1995), 179-201.
- W. Fulton and J. Harris, Representation Theory, a first course, Graduate Texts in Mathematics 129, Springer, New York, 1991.
- A. Gyoja, A q-analogue of Young symmetrizer, Osaka J. Math. 23 (1986), 841-852.
- P. N. Hoefsmith, Representations of Hecke algebras of finite groups with BN-pairs of classical type, Ph.D. Thesis, Univ. of British Columbia, 1974.
- J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge Studies in Advanced Mathematics 29, Cambridge University Press, Cambridge, 1990.
- G. James, A. Kerber, The Representation Theory of the Symmetric Group, %Cambridge University Press. Encyclopedia of Mathematics and its Application 16, Addison-Wesley, Reading, 1981.
- A. A. A. Jucys, Symmetric polynomials and the center of the symmetric group ring, Institute of Physics and Mathematics of the Academy of Sciences, Lithuanian SSR, USSR, Reports on Mathematical Physics 5 (1974).
- A. Kerber, Algebraic Combinatorics Via Finite Group Actions, Wissenschaftsverlag, Mannheim, 1991.
- A. Lascoux and M.-P. Schützenberger, Formulaire Raisonné de fonctions Symétriques, LITP, U.E.R. Maths, Paris VII, Oct. 1985.
- A. Lascoux and M.-P. Schützenberger, Le monoide plaxique, Quaderni de 'La ricerca scientifica', No. 109, ROMA, CNR, 1981.
- V. F. Molčanov, On matrix elements of irreducible representations of a symmetric group, Vestnik Moskov. Univ. Ser. I Mat. Mekh. 21 (1966), No. 1, 52-57.
- G. E. Murphy, The idempotents of the symmetric group and Nakayama's conjecture, J. Algebra 81 (1983), 258-265.
- G. E. Murphy, On the Representation theory of the Symmetric Groups and Associated Hecke Algebras, J. Algebra 152 (1992), 492-513.
- D. E. Rutherford, Substitutional Analysis, University Press, Edinburgh, 1948.