ArticleOriginal scientific text

Title

Intertwining spaces associated with q-analogues of the Young symmetrizers in the Hecke algebra

Authors 1, 2

Affiliations

  1. L.I.R., Université de Rouen, Place E. Blondel, B.P. 118, 76134 Mont-Saint-Aignan Cedex, France
  2. L.I.T.P., Université Paris 7, 2 place Jussieu, 75251 Paris Cedex 05, France

Abstract

Abstract. Let H be the Hecke algebra of the symmetric group. With each subset S ⊂ [1,n-1], we associate two idempotents S and S which are q-deformations of the symmetrizer and antisymmetrizer relative to the Young subgroup {gothS}IS generated by the simple transpositions {(i,i+1)}iS. We give here explicit bases for the intertwining space S1HS2, indexed by the double classes {gothS}IS1{gothS}n{gothS}IS2. We also compute bases and characters of the right ideals {\goth I}(I,J)= □_{S_1}H ∇_{S_2}H.

Bibliography

  1. G. E. Andrews, The theory of partitions, Addison-Wesley, London, 1976.
  2. C. W. Curtis, I. Reiner, Representations theory of finite groups and associative algebras, Interscience, New York, 1962.
  3. R. Dipper and G. James, Blocks and idempotents of Hecke algebras of general linear groups, Proc. London Math. Soc. (3) 54 (1987), 57-82.
  4. G. Duchamp, D. Krob, B. Leclerc, A. Lascoux, T. Scharf, J. Y. Thibon, Euler-Poincaré characteristic and polynomial representations of Iwahori-Hecke algebras, Publ. Res. Inst. Math. Sci. 31 (1995), 179-201.
  5. W. Fulton and J. Harris, Representation Theory, a first course, Graduate Texts in Mathematics 129, Springer, New York, 1991.
  6. A. Gyoja, A q-analogue of Young symmetrizer, Osaka J. Math. 23 (1986), 841-852.
  7. P. N. Hoefsmith, Representations of Hecke algebras of finite groups with BN-pairs of classical type, Ph.D. Thesis, Univ. of British Columbia, 1974.
  8. J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge Studies in Advanced Mathematics 29, Cambridge University Press, Cambridge, 1990.
  9. G. James, A. Kerber, The Representation Theory of the Symmetric Group, %Cambridge University Press. Encyclopedia of Mathematics and its Application 16, Addison-Wesley, Reading, 1981.
  10. A. A. A. Jucys, Symmetric polynomials and the center of the symmetric group ring, Institute of Physics and Mathematics of the Academy of Sciences, Lithuanian SSR, USSR, Reports on Mathematical Physics 5 (1974).
  11. A. Kerber, Algebraic Combinatorics Via Finite Group Actions, Wissenschaftsverlag, Mannheim, 1991.
  12. A. Lascoux and M.-P. Schützenberger, Formulaire Raisonné de fonctions Symétriques, LITP, U.E.R. Maths, Paris VII, Oct. 1985.
  13. A. Lascoux and M.-P. Schützenberger, Le monoide plaxique, Quaderni de 'La ricerca scientifica', No. 109, ROMA, CNR, 1981.
  14. V. F. Molčanov, On matrix elements of irreducible representations of a symmetric group, Vestnik Moskov. Univ. Ser. I Mat. Mekh. 21 (1966), No. 1, 52-57.
  15. G. E. Murphy, The idempotents of the symmetric group and Nakayama's conjecture, J. Algebra 81 (1983), 258-265.
  16. G. E. Murphy, On the Representation theory of the Symmetric Groups and Associated Hecke Algebras, J. Algebra 152 (1992), 492-513.
  17. D. E. Rutherford, Substitutional Analysis, University Press, Edinburgh, 1948.
Pages:
61-70
Main language of publication
English
Published
1996
Exact and natural sciences