ArticleOriginal scientific text
Title
Vector fields, residues and cohomology
Authors 1
Affiliations
- Department of Mathematics, University of British Columbia, 121-1984 Mathematics Road, Vancouver, B.C. V6T 1Z2, Canada
Bibliography
- [AA] E. Akyildiz and Y. Akyildiz, The relations of Plücker coordinates to Schubert calculus, J. Differential Geom. 29 (1989), 135-142.
- [AC1] E. Akyildiz and J. B. Carrell, Cohomology of projective varieties with regular
actions, Manuscripta Math. 58 (1987), 473-486. - [AC2] E. Akyildiz and J. B. Carrell, A generalization of the Kostant-Macdonald identity, Proc. Nat. Acad. Sci. U.S.A. 86 (1989), 3934-3937.
- [ACLS] E. Akyildiz, J. B. Carrell, D. I. Lieberman and A. J. Sommese, On the graded rings associated to holomorphic vector fields with exactly one zero, Proc. Sympos. Pure Math. 40 (1983), 55-57.
- [ALP] E. Akyildiz, A. Lascoux and P. Pragacz, Cohomology of Schubert subvarieties of
, J. Differential Geom. 35 (1992), 511-519. - [At] M. F. Atiyah, Complex analytic connections in fibre bundles, Trans. Amer. Math. Soc. 85 (1957), 181-207.
- [Be] A. Beauville, Une notion de résidu en géométrie analytique, in: Séminaire Pierre Lelong (Analyse). Année 1970. Lecture Notes in Math. 205, Springer-Verlag, Berlin and New York, 1971, 183-203.
- [BB] A. Białynicki-Birula, Some theorems on actions of algebraic groups, Ann. of Math. (2) 98 (1973), 480-497.
- [B1] R. Bott, Vector fields and characteristic numbers, Michigan Math. J. 40 (1967), 231-244.
- [B2] R. Bott, A residue formula for holomorphic vector fields, J. Differential Geom. 1 (1967), 311-330.
- [B3] R. Bott, On a topological obstruction to integrability, Proc. Sympos. Pure Math. 16 (1970), 127-132.
- [C1] J. B. Carrell, A remark on the Grothendieck residue map, Proc. Amer. Math. Soc. 70 (1978), 43-48.
- [C2] J. B. Carrell, Orbits of the Weyl group and a theorem of DeConcini and Procesi, Compositio Math. 60 (1986), 45-52.
- [C3] J. B. Carrell, Vector fields, flag varieties and Schubert calculus, in: Proceedings of the Hyderabad Conference on Algebraic Groups, Manoj-Prakashan, Madras, 1991, 23-59.
- [C4] J. B. Carrell, Bruhat cells in the nilpotent variety and the intersection rings of Schubert varieties, J. Differential Geom. 37 (1993), 651-668.
- [C5] J. B. Carrell, Deformation of the nilpotent zero scheme and the intersection ring of invariant subvarieties, to appear in J. Reine Angew. Math.
- [CL1] J. B. Carrell, and D. I. Lieberman, Holomorphic vector fields and compact Kaehler manifolds, Invent. Math. 21 (1973), 303-309.
- [CL2] J. B. Carrell and D. I. Lieberman, Vector fields and Chern numbers, Math. Ann. 225 (1977), 263-272.
- [DS] C. DeConcini and T. A. Springer, Betti numbers of complete symmetric varieties, Geometry Today, Birkhäuser (1985).
- [H] R. Hartshorne, Residues and duality, Lecture Notes in Math. 20, Springer-Verlag, Berlin and New York, 1966.
- [L] J. Lipman, Dualizing sheaves, differentials and residues on algebraic varieties, Astérisque 117 (1984).
- [V] J. L. Verdier, Base change for twisted inverse image of coherent sheaves, in: Algebraic Geometry, Oxford University Press, London, 1969, 393-408.