PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
1996 | 36 | 1 | 25-44
Tytuł artykułu

Piecewise polynomial functions, convex polytopes and enumerative geometry

Autorzy
Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
Słowa kluczowe
Rocznik
Tom
36
Numer
1
Strony
25-44
Opis fizyczny
Daty
wydano
1996
Twórcy
autor
  • École Normale Supérieure de Lyon, 46 allée d'Italie, 69364 Lyon Cedex 7, France
Bibliografia
  • [1] M. F. Atiyah and R. Bott, The moment map and equivariant cohomology, Topology 23 (1984), 1-28.
  • [2] D. N. Bernstein, The number of roots of a system of equations, Functional Anal. Appl. 9 (1975), 183-185.
  • [3] E. Bifet, Cohomology, symmetry, and perfection, Publ. Mat. 36 (1992), 407-420.
  • [4] E. Bifet, C. DeConcini and C. Procesi, Cohomology of regular embeddings, Adv. Math. 82 (1990), 1-34.
  • [5] L. J. Billera, The algebra of piecewise polynomial functions, Adv. Math. 76 (1989), 170-183.
  • [6] L. J. Billera and L. L. Rose, Modules of piecewise polynomial functions and their freeness, Math. Z. 209 (1992), 485-497.
  • [7] M. Brion, Points entiers dans les polyèdres convexes, Ann. Scient. École Norm. Sup. (4) 21 (1988), 653-663.
  • [8] M. Brion, Groupe de Picard et nombres caractéristiques des variétés sphériques, Duke Math. J. 58 (1989), 397-424.
  • [9] E. Casas-Alvero and S. Xambó-Descamps, The Enumerative Theory of Conics after Halphen, Lecture Notes in Math. 1196, Springer, Berlin, 1986.
  • [10] C. DeConcini and C. Procesi, Complete symmetric varieties II, in: Algebraic Groups and Related Topics, R. Hotta (ed.), Kinokuniya, Tokyo, 1985, 481-514.
  • [11] A. Grothendieck and J. Dieudonné, Elements de géométrie algébrique I, Inst. Hautes Études Sci. Publ. Math. 4 (1960).
  • [12] W. Fulton, Intersection theory, Springer, Berlin, 1984.
  • [13] W. Fulton, Introduction to toric varieties, Princeton University Press, 1993.
  • [14] W. Fulton and B. Sturmfels, Intersection theory on toric varieties, preprint 1994.
  • [15] A. Hirschowitz, L'anneau de Chow équivariant, C. R. Acad. Sci. Paris Série I, 298 (1984), 87-89.
  • [16] B. Y. Kazarnovskii, Newton polyhedra and the Bézout theorem for matrix-valued functions of finite-dimensional representations, Functional Anal. Appl. 21 (1987), 319-321.
  • [17] F. Knop, The Luna-Vust theory of spherical embeddings, in: Proceedings of the Hyderabad conference on algebraic groups, S. Ramanan (ed.), Manoj-Prakashan, Madras, 1991, 225-250.
  • [18] A. G. Kouchnirenko, Polyèdres de Newton et nombres de Milnor, Invent. Math. 32 (1976), 1-31.
  • [19] P. McMullen, The polytope algebra, Adv. Math. 78 (1989), 76-130.
  • [20] P. McMullen, Valuations and dissections, in: Handbook of convex geometry, Volume B, P. Gruber and J. Wills (eds.), North-Holland, 1993, 933-988.
  • [21] R. Morelli, A theory of polyhedra, Adv. Math. 97 (1993), 1-73.
  • [22] R. Morelli, The K-theory of a toric variety, Adv. Math. 100 (1993), 154-182.
  • [23] C. Procesi and S. Xambó-Descamps, On Halphen's first formula, in: Enumerative algebraic geometry (Copenhagen, 1989), Contemp. Math. 123 (1991), 199-211.
  • [24] A. V. Pukhlikov and A. G. Khovanskii, Finitely additive measures of virtual polytopes, St. Petersburg Math. J. 4 (1993), 337-356.
  • [25] R. P. Stanley, Combinatorics and commutative algebra, Birkhäuser, Basel, 1983.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-bcpv36z1p25bwm
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.